精英家教网 > 高中数学 > 题目详情
5.已知A={x|-1<x<4},B={x|-5$<x<\frac{3}{2}$},C={x|x<2a},求:
(1)A∪B      
(2)A⊆C,求a的取值范围.

分析 (1)根据集合的并集的远算求解即可;
(2)根据集合的子集的概念求解即可.

解答 解:(1)∵A={x|-1<x<4},B={x|-5<x<$\frac{3}{2}$},
∴A∪B={x|-5<x<4};
(2)∵A={x|-1<x<4},C={x|x<2a},
又∵A⊆C,
∴2a≥4,
解得a≥2.

点评 本题主要考查集合的交、并、补集运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=2x+lg(x+1)-5的零点x0∈(k,k+1),k∈Z,则k=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$cos(α-\frac{π}{2})=\frac{3}{5}$且$α∈(\frac{π}{2},π)$,则cosα=-$\frac{4}{5}$,$tan(α-\frac{π}{4})$=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若等比数列前n项和为${S_n}={2^{n+1}}-c$,则c等于(  )
A.2B.-2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC中,D为AC的中点,AB=3,BD=2,cos∠ABC=$\frac{1}{4}$.
(Ⅰ)求BC;
(Ⅱ)求sinA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在数列{an}中,已知${a_{n+1}}={a_n}+\frac{n}{2}$,且a1=2,则a99的值为(  )
A.2477B.2427C.2427.5D.2477.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等比数列{an}的前n项和Sn=x•3n-1-$\frac{1}{6}$,则x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平行四平行边形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且$\overrightarrow{OM}$=2$\overrightarrow{MA}$,N为BC的中点,则$\overrightarrow{MN}$=(  )
A.$\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$B.$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$C.$\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow{c}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\stackrel{c}{→}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.幂函数f(x)的图象经过点($\sqrt{2}$,2),点(-2,$\frac{1}{4}$)在幂函数g(x)的图象上,
(1)求f(x),g(x)的解析式.
(2)x为何值时f(x)>g(x)?x为何值时f(x)<g(x)?

查看答案和解析>>

同步练习册答案