精英家教网 > 高中数学 > 题目详情

如图,M为椭圆数学公式上任意一点,P为线段OM的中点,求数学公式的最小值________.


分析:由题意设出P的坐标,求出,然后直接计算,即可求出最小值.
解答:设M(),所以P(),
所以=
所以=
=-2++=
的最小值
故答案为:
点评:本题是中档题,考查椭圆的简单性质,椭圆的参数方程,向量的数量积等知识,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x24
+y2=1
的焦点为F1、F2,点P为椭圆上任意一点,过F2作∠F1PF2的外角平分线的垂线,垂足为点Q,过点Q作y轴的垂线,垂足为N,线段QN的中点为M,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,M为椭圆
x2
3
+y2=1
上任意一点,P为线段OM的中点,求
PF1
PF2
的最小值
-
7
4
-
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•崇明县二模)如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),M为椭圆上的一个动点,F1、F2分别为椭圆的左、右焦点,A、B分别为椭圆的一个长轴端点与短轴的端点.当MF2⊥F1F2时,原点O到直线MF1的距离为
1
3
|OF1|.
(1)求a,b满足的关系式;
(2)当点M在椭圆上变化时,求证:∠F1MF2的最大值为
π
2

(3)设圆x2+y2=r2(0<r<b),G是圆上任意一点,过G作圆的切线交椭圆于Q1,Q2两点,当OQ1⊥OQ2时,求r的值.(用b表示)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省成都市高三三诊模拟考试理科数学 题型:填空题

如图,已知椭圆的焦点为F1,F2,点P为椭圆上任意一点,过F2的外角平分线的垂线,垂足为点Q,过点Q作轴的垂线,垂足为N,线段QN的中点为M,则点M的轨迹方程为     

 

查看答案和解析>>

同步练习册答案