ÒÑÖªµãPΪԲÖÜx2+y2=4µÄ¶¯µã£¬¹ýPµã×÷PH¡ÍxÖᣬ´¹×ãΪH£¬ÉèÏ߶ÎPHµÄÖеãΪE£¬¼ÇµãEµÄ¹ì¼£·½³ÌΪC£¬µãA£¨0£¬1£©
£¨1£©Ç󶯵ãEµÄ¹ì¼£·½³ÌC£»
£¨2£©ÈôбÂÊΪkµÄÖ±Ïßl¾­¹ýµãA£¨0£¬1£©ÇÒÓëÇúÏßCµÄÁíÒ»¸ö½»µãΪB£¬Çó¡÷OABÃæ»ýµÄ×î´óÖµ¼°´ËʱֱÏßlµÄ·½³Ì£»
£¨3£©ÊÇ·ñ´æÔÚ·½ÏòÏòÁ¿
a
=(1£¬k)(k¡Ù0)
µÄÖ±Ïßl£¬Ê¹µÃlÓëÇúÏßC½»ÓëÁ½¸ö²»Í¬µÄµãM£¬N£¬ÇÒÓÐ|
AM
|=|
AN
|
£¿Èô´æÔÚ£¬Çó³ökµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓûÇ󶯵ãEµÄ¹ì¼£·½³Ì£¬ÉèE£¨x£¬y£©£¬Ö»ÐëÇó³öÆä×ø±êx£¬yµÄ¹Øϵʽ¼´¿É£¬ÀûÓÃP£¨x£¬2y£©µãÔÚÔ²ÉÏ£¬¼´¿ÉµÃµ½´ð°¸£»
£¨2£©¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½µÃS¡÷OAB=
1
2
|OA||xB|=
1
2
|xB|
£¬ÓûÇóÃæ»ýµÄ×î´óÖµ£¬Ö»Ð뿼ÂÇ|xB|µÄ×î´óÖµ¼´¿É£®ÓÉ´ËÇó³öÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÏȼÙÉè´æÔÚ·ûºÏÌâÉèÌõ¼þµÄÖ±Ïßl£¬ÉèÆä·½³ÌΪ£ºy=kx+m£¬½«Ö±Ïߵķ½³Ì´úÈëÍÖÔ²µÄ·½³Ì£¬ÏûÈ¥yµÃµ½¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÔÙ½áºÏ¸ùϵÊýµÄ¹ØϵÀûÓÃÖеã×ø±ê¹«Ê½£¬Çó³ökµÄÈ¡Öµ·¶Î§£¬Èô³öÏÖì¶Ü£¬Ôò˵Ã÷¼ÙÉè²»³ÉÁ¢£¬¼´²»´æÔÚ£»·ñÔò´æÔÚ£®
½â´ð£º½â£º£¨1£©ÉèE£¨x£¬y£©£¬ÔòP£¨x£¬2y£©£¬¶øPµãÔÚÔ²ÉÏ
ËùÒÔx2+4y2=4£¬¼´
x2
4
+y2=1

£¨2£©S¡÷OAB=
1
2
|OA||xB|=
1
2
|xB|

¶ø|xB|¡Ü2£¬¹Êµ±xB=¡À2ʱ£¬¡÷OABÃæ»ýµÄ×î´óֵΪ1
´Ëʱ£¬Ö±ÏßlµÄ·½³ÌΪ£ºx-2y+2=0»òx+2y-2=0
£¨3£©¼ÙÉè´æÔÚ·ûºÏÌâÉèÌõ¼þµÄÖ±Ïßl£¬ÉèÆä·½³ÌΪ£ºy=kx+m£¬
M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬MNµÄÖеãQ£¨x0£¬y0£©
ÓÚÊÇ
y=kx+m
x2+4y2=4
⇒£¨1+4k2£©x2+8kmx+4m2-4=0
¡÷=64k2m2-4£¨1+4k2£©£¨4m2-4£©£¾0
4k2-m2+1£¾0¡­¢Ù
¶øx1+x2=-
8km
1+4k2

¹Êx0=-
4km
1+4k2

´Ó¶øy0=
m
1+4k2

|
AM
|=|
AN
|?AQ¡Íl

¶økAQ=
m
1+4k2
-1
-
4km
1+4k2
-0
=
4k2-m+1
4km

¹ÊkAQ•k=-1
¿ÉµÃ£º3m=-4k2-1¡­¢Ú
Óɢ٢ڵãº-3£¼m£¼0
¹Êk¡Ê(-
2
£¬0)¡È(0£¬
2
)
µãÆÀ£º¿¼²é¹ì¼£µÄÇ󷨺ÍÏòÁ¿ÔÚ¼¸ºÎÖеÄÓ¦Óã¬Ö±ÏßÓëԲ׶ÇúÏßÏཻÏÒµÄÖеãÎÊÌ⣬½âÌâ·½·¨Ò»°ãÁªÁ¢£¬ÏûÔª£¬ÀûÓÃΤ´ï¶¨Àí£¬ÌåÏÖÁË·½³ÌµÄ˼ÏëºÍת»¯µÄ˼Ïë·½·¨£¬ÊôÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖªµãPΪԲÖÜx2+y2=4µÄ¶¯µã£¬¹ýPµã×÷PH¡ÍxÖᣬ´¹×ãΪH£¬ÉèÏ߶ÎPHµÄÖеãΪE£¬¼ÇµãEµÄ¹ì¼£·½³ÌΪC£¬µãA£¨0£¬1£©
£¨1£©Ç󶯵ãEµÄ¹ì¼£·½³ÌC£»
£¨2£©ÈôбÂÊΪkµÄÖ±Ïßl¾­¹ýµãA£¨0£¬1£©ÇÒÓëÇúÏßCµÄÁíÒ»¸ö½»µãΪB£¬Çó¡÷OABÃæ»ýµÄ×î´óÖµ¼°´ËʱֱÏßlµÄ·½³Ì£»
£¨3£©ÊÇ·ñ´æÔÚ·½ÏòÏòÁ¿Êýѧ¹«Ê½µÄÖ±Ïßl£¬Ê¹µÃlÓëÇúÏßC½»ÓëÁ½¸ö²»Í¬µÄµãM£¬N£¬ÇÒÓÐÊýѧ¹«Ê½£¿Èô´æÔÚ£¬Çó³ökµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º0122 ÆÚÖÐÌâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªµãPΪԲÖÜx2+y2=4µÄ¶¯µã£¬¹ýPµã×÷PH¡ÍxÖᣬ´¹×ãΪH£¬ÉèÏ߶ÎPHµÄÖеãΪE£¬¼ÇµãEµÄ¹ì¼£·½³ÌΪC£¬µãA£¨0£¬1£©£¬
£¨1£©Ç󶯵ãEµÄ¹ì¼£·½³ÌC£»
£¨2£©ÈôбÂÊΪkµÄÖ±Ïßl¾­¹ýµãA£¨0£¬1£©ÇÒÓëÇúÏßCµÄÁíÒ»¸ö½»µãΪB£¬Çó¡÷OABÃæ»ýµÄ×î´óÖµ¼°´ËʱֱÏßlµÄ·½³Ì£»
£¨3£©ÊÇ·ñ´æÔÚ·½ÏòÏòÁ¿µÄÖ±Ïßl£¬Ê¹µÃlÓëÇúÏßC½»ÓëÁ½¸ö²»Í¬µÄµãM£¬N£¬ÇÒÓУ¿Èô´æÔÚ£¬Çó³ökµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄêÖØÇìÒ»Öи߶þ£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªµãPΪԲÖÜx2+y2=4µÄ¶¯µã£¬¹ýPµã×÷PH¡ÍxÖᣬ´¹×ãΪH£¬ÉèÏ߶ÎPHµÄÖеãΪE£¬¼ÇµãEµÄ¹ì¼£·½³ÌΪC£¬µãA£¨0£¬1£©
£¨1£©Ç󶯵ãEµÄ¹ì¼£·½³ÌC£»
£¨2£©ÈôбÂÊΪkµÄÖ±Ïßl¾­¹ýµãA£¨0£¬1£©ÇÒÓëÇúÏßCµÄÁíÒ»¸ö½»µãΪB£¬Çó¡÷OABÃæ»ýµÄ×î´óÖµ¼°´ËʱֱÏßlµÄ·½³Ì£»
£¨3£©ÊÇ·ñ´æÔÚ·½ÏòÏòÁ¿µÄÖ±Ïßl£¬Ê¹µÃlÓëÇúÏßC½»ÓëÁ½¸ö²»Í¬µÄµãM£¬N£¬ÇÒÓУ¿Èô´æÔÚ£¬Çó³ökµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄêɽ¶«Ê¡¼ÃÄþÊÐ×޳ǶþÖи߶þ£¨ÉÏ£©ÆÚÖÐÊýѧÊÔ¾í£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªµãPΪԲÖÜx2+y2=4µÄ¶¯µã£¬¹ýPµã×÷PH¡ÍxÖᣬ´¹×ãΪH£¬ÉèÏ߶ÎPHµÄÖеãΪE£¬¼ÇµãEµÄ¹ì¼£·½³ÌΪC£¬µãA£¨0£¬1£©
£¨1£©Ç󶯵ãEµÄ¹ì¼£·½³ÌC£»
£¨2£©ÈôбÂÊΪkµÄÖ±Ïßl¾­¹ýµãA£¨0£¬1£©ÇÒÓëÇúÏßCµÄÁíÒ»¸ö½»µãΪB£¬Çó¡÷OABÃæ»ýµÄ×î´óÖµ¼°´ËʱֱÏßlµÄ·½³Ì£»
£¨3£©ÊÇ·ñ´æÔÚ·½ÏòÏòÁ¿µÄÖ±Ïßl£¬Ê¹µÃlÓëÇúÏßC½»ÓëÁ½¸ö²»Í¬µÄµãM£¬N£¬ÇÒÓУ¿Èô´æÔÚ£¬Çó³ökµÄÈ¡Öµ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸