精英家教网 > 高中数学 > 题目详情
9.已知tanθ=$\frac{1}{3}$,那么tan($θ+\frac{π}{4}$)等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 直接利用两角和的正切函数公式.代入数据求解即可.

解答 解:tanθ=$\frac{1}{3}$,
那么tan($θ+\frac{π}{4}$)=$\frac{tanθ+tan\frac{π}{4}}{1-tanθtan\frac{π}{4}}$=$\frac{\frac{1}{3}+1}{1-\frac{1}{3}}$=2.
故选:A.

点评 本题考查两角和的正切函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知角β的终边在图中阴影所表示的范围内(不包括边界),那么β∈(K•180°+30°,K•180°+150°),k∈Z..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}的前n项和为${S_n}={(n+1)^2}$,则a4+a5+a6=33.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.集合A={lg2,lg5},B={a,b},若A=B,则$\frac{{a}^{2}+{b}^{2}-1}{{a}^{3}+{b}^{3}-1}$的值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,已知sin2A=sin2B+sin2C,且sinA=2sinBcosC,则△ABC的形状是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=asinx+cosx在区间$(\frac{π}{6},\frac{π}{4})$上单调递增,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}中,a1+a6=33,a2a5=32,公比q>1,则S5=31.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线x2-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的一条渐近线方程为x+$\sqrt{3}$y=0,则m=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\left\{\begin{array}{l}{2^x},x≤1\\{log_2}x,x>1\end{array}$,则f(f(2))=2;满足不等式f(x)≤4的x的取值范围是x≤16.

查看答案和解析>>

同步练习册答案