精英家教网 > 高中数学 > 题目详情

【题目】已知过点的动直线与抛物线相交于两点.当直线的斜率是时,.

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

【答案】(1)x2=4y;(2)b(2,+∞).

【解析】

试题分析:本题主要考查抛物线的标准方程、直线与抛物线的交点问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用点斜式先写出直线的方程,令直线与抛物线联立,消参得到关于y的方程,利用韦达定理,得到,再利用,解出,得到抛物线的方程;第二问,设出直线的方程,令抛物线与直线联立,消参得到关于x的方程,利用韦达定理,得到BC的中点坐标,从而得到BC的中垂线方程,令x=0,得到中垂线在y轴上的截距,再通过配方法求范围.

试题解析:(1)设B(x1,y1),C(x2,y2),当直线l的斜率是时,l的方程为y=(x+4),即x=2y-4.

得2y2-(8+p)y+8=0,

,

y2=4y1

①②③及p>0得:y1=1,y2=4,p=2,得抛物线G的方程为x2=4y.

(2)设l:y=k(x+4),BC的中点坐标为(x0,y0),

得x2-4kx-16k=0,

,y0=k(x0+4)=2k2+4k.

线段BC的中垂线方程为y-2k2-4k=- (x-2k),

线段BC的中垂线在y轴上的截距为:b=2k2+4k+2=2(k+1)2

对于方程,由Δ=16k2+64k>0得k>0或k<-4. b(2,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面,底面为矩形, ,该四棱锥的外接球的体积为,则到平面的距离为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为2的正方形边的中点,将分别沿折起,使得点与点重合,记为点,得到三棱锥

(Ⅰ)求证:平面平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某金匠以黄金为原材料加工一种饰品,经多年的数据统计得知,该金匠平均每加5 个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响,以频率估计概率.

(1)若金金匠加工4个饰品,求其中废品的数量不超过1的概率;

(2)若该金匠加工了 3个饰品,求他所获利润的数学期望.

(两小问的计算结果都用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到如图所示的频率分布直方图:

(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

(2)若用分层抽样的方法从分数在的学生中共抽取人,该人中成绩在的有几人?

(3)在(2)中抽取的人中,随机抽取人,求分数在人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c, asinB+bcosA=c. (Ⅰ)求B;
(Ⅱ)若a=2 c,SABC=2 ,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,上的点.

)求证:平面平面

的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙丙丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为 , 有以下结论:
①当x>1时,甲在最前面;
②当x>1时,乙在最前面;
③当0<x<1时,丁在最前面,当x>1时,丁在最后面;
④丙不可能在最前面,也不可能最最后面;
⑤如果它们已知运动下去,最终在最前面的是甲.
其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的部分图象如图所示,求:
(1)f(x)的表达式.
(2)f(x)的单调增区间.
(3)f(x)的最小值以及取得最小值时的x集合.

查看答案和解析>>

同步练习册答案