精英家教网 > 高中数学 > 题目详情

【题目】f(x)=x3-3ax2+2bxx=1处有极小值-1.

(1)求a、b的值

(2)求出f(x)的单调区间

(3)求f(x)的极大值.

【答案】(1);(2)见解析;(3)

【解析】分析:(1)已知函数处有极小值-1,即,所以先求导函数,再代入列方程组,即可解得的值
(2)分别解不等式0,即可得函数的单调增区间与单调递减区间
(3)由(2)可得函数的单调性,从而求出函数的极大值

详解:

(1) (x)=3x2-6ax+2b,由题意知

解之得a=,b=-

(2)由(1)知f(x)=x3-x2-x,(x)=3x2-2x-1=3(x+)(x-1)

(x)>0时,x>1或x<-

(x)<0时,-<x<1

∴函数f(x)的单调增区间为(-∞,-)和(1,+∞),减区间为(-,1)

(3)由(2)得到函数的单调性,可得的极大值=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面凸四边形中(凸四边形指没有角度数大于的四边形),.

(1)若,求

(2)已知,记四边形的面积为.

① 求的最大值;

② 若对于常数,不等式恒成立,求实数的取值范围.(直接写结果,不需要过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,中点,连接,则异面直线所成角的余弦值为_____

【答案】

【解析】

连接CD1CM,由四边形A1BCD1为平行四边形得A1BCD1,即∠CD1M为异面直线A1BD1M所成角,再由已知求△CD1M的三边长,由余弦定理求解即可.

如图,

连接,由,可得四边形为平行四边形,

,∴为异面直线所成角,

由正方体的棱长为1,中点,

中,由余弦定理可得,

∴异面直线所成角的余弦值为

故答案为:

【点睛】

本题考查异面直线所成角的求法,异面直线所成的角常用方法有:将异面直线平移到同一平面中去,达到立体几何平面化的目的;或者建立坐标系,通过求直线的方向向量得到直线夹角或其补角.

型】填空
束】
16

【题目】中,角所对的边分别是的中点,面积的最大值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆形纸片的圆心为,半径为1,该纸片上的等边三角形的中心为.为圆上的点,分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起,使得重合,得到三棱锥.当的边长变化时,所得三棱锥体积的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知等差数列{an}中,a1=1a3=﹣3

)求数列{an}的通项公式;

)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a3=9,a5=17,记数列 的前n项和为Sn , 若 ,对任意的n∈N*成立,则整数m的最小值为(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在平面直角坐标系xOy中,圆C的方程为,且圆C与y轴交于M,N两点(点N在点M的上方),直线与圆C交于A,B两点。

(1)若,求实数k的值。

(2)设直线AM,直线BN的斜率分别为,若存在常数使得恒成立?若存在,求出a的值.若不存在请说明理由。

(3)若直线AM与直线BN相较于点P,求证点P在一条定直线上。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某公司举行的年终庆典活动中,主持人利用随机抽奖软件进行抽奖:由电脑随机生成一张如图所示的33表格,其中1格设奖300元,4格各设奖200元,其余4格各设奖100元,点击某一格即显示相应金额.某人在一张表中随机不重复地点击3格,记中奖的总金额为X元.

1)求概率

2)求的概率分布及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中

(I)求的值;

(Ⅱ)求被调查的市民的满意程度的平均数,众数,中位数;

(Ⅲ)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.

查看答案和解析>>

同步练习册答案