已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点.证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由.
(1) ;(2)证明见解析;(3)存在,.
【解析】
试题分析:(1)由椭圆的几何性质知,,结合可很快求得,这样就得出了椭圆的标准方程;(2)若,,则,因此我们要把用表示出来,先用把直线方程写出,然后与椭圆方程联立解方程组可得(注意消去得关于的二次方程,这个二次方程有一个解是,另一解是,这样很容易得到,于是有);(3)这是存在性命题,总是假设点存在,设,由题意则应该有,即,而点的坐标在(2)中已经用表示出来了,因此利用若能求出,则说明符合题意的点存在,否则就不存在.
(1),,椭圆方程为 4分
(2),设,则.
直线:,即,
代入椭圆得
,.
,
(定值). 10分
(3)设存在满足条件,则.
,,
则由得 ,从而得.
存在满足条件 16分
考点:(1)椭圆标准方程;(2)解析几何中的定值问题;(3)解析几何中的存在性命题.
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测二文科数学试卷(解析版) 题型:填空题
设为坐标原点,给定一个定点,而点在正半轴上移动,表示的长,则中两边长的比值的最大值为 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测二文科数学试卷(解析版) 题型:填空题
某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测。若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 .
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省淮安市高三Ⅲ级部决战四统测三数学试卷(解析版) 题型:填空题
设x1、x2 是函数的两个极值点,且 则b的最大值为_________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省徐州市高三第三次质量检测理科数学试卷(解析版) 题型:解答题
如图,在五面体中,已知平面,,,,.
(1)求证:;
(2)求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com