精英家教网 > 高中数学 > 题目详情
2.△ABC的内角A,B,C的对边分别为a,b,c,已知b=1,B=$\frac{π}{6}$,C=$\frac{π}{4}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{3}+1}}{4}$B.+1C.$\frac{{\sqrt{3}-1}}{4}$D.$\sqrt{3}$-1

分析 由b,sinC,sinB的值,利用正弦定理求出c的值,根据内角和定理和两角和的正弦公式,求出A的正弦值,代入三角形面积公式即可求出三角形ABC的面积.

解答 解:∵b=1,B=$\frac{π}{6}$,C=$\frac{π}{4}$,
∴由正弦定理得,c=$\frac{bsinC}{sinB}$=$\frac{1×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\sqrt{2}$,
又sinA=sin(π-B-C)=sin($\frac{π}{6}$+$\frac{π}{4}$)=$\frac{1}{2}×\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×\sqrt{2}×$$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\frac{\sqrt{3}+1}{4}$.
故选:A.

点评 本题考查正弦定理,三角形面积公式,以及两角和的正弦公式,熟练掌握定理及公式是解本题的关键,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在边长为1的等边△ABC中,O为边AC的中点,BO为边AC上的中线,$\overrightarrow{BG}$=2$\overrightarrow{GO}$,设$\overrightarrow{CD}$∥$\overrightarrow{AG}$,若$\overrightarrow{AD}$=$\overrightarrow{AB}$+λ$\overrightarrow{AC}$(λ∈R),则|$\overrightarrow{AD}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(4,-3),则$\overrightarrow{a}$•$\overrightarrow{b}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如图所示的算法框图,若输出k的值为6,则判断框内可填入的条件是S>$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3-3ax+b的图象在(1,f(1))处与y=2相切.
(1)求a,b的值;
(2)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知下列四个命题:
①函数f(x)=2x满足:对任意x1,x2∈R且x1≠x2都有$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$;
②函数$f(x)={log_2}(x+\sqrt{1+{x^2}})$,g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函数;
③若函数f(x)满足f(x-1)=-f(x+1),且f(1)=2,则f(7)=-2
④设x1,x2是关于x的方程|logax|=k(a>0且a≠1)的两根,则x1x2=1.
其中正确命题的序号是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知下列四个命题,其中真命题的序号是(2)(4)(把所有真命题的序号都填上).
(1)命题“?x∈R,使得x2+x+1>0”的否定是“?x∈R,都有x2+x+1<0”;
(2)命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为真命题;
(3)“f'(x0)=0”是“函数f(x)在x0处取得极值”的充分不必要条件;
(4)直线$y=\frac{1}{2}x+b$不能作为函数$f(x)=\frac{1}{e^x}$图象的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0.
(1)证明:a>0且$-2<\frac{b}{a}<-1$;
(2)试判断函数f(x)在(0,1)内的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对任意实数x,若不等式4x-m•2x+2>0恒成立,则实数m的取值范围是(  )
A.-2$\sqrt{2}$<m<2$\sqrt{2}$B.-2<m<2C.m≤2$\sqrt{2}$D.-2≤m≤2

查看答案和解析>>

同步练习册答案