精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)的离心率为,且过点.

1)求椭圆C的方程;

2)过坐标原点的直线与椭圆交于MN两点,过点M作圆的一条切线,交椭圆于另一点P,连接,证明:.

【答案】12)见解析

【解析】

1)根据椭圆的离心率为,且过点,由,结合求解.

2)当直线的斜率不存在时,可得直线的方程为,验证即可. 当直线斜率存在时,设直线的方程为,根据直线与圆相切,得到,设,则,联立,由弦长公式求得 ,然后由两点间的距离公式,将韦达定理代入求得即可.

1)设椭圆的半焦距为c,因为椭圆的离心率为,且过点.

所以,又

解得

所以椭圆C的方程为:.

2)①当直线的斜率不存在时,依题意,可得直线的方程为.

若直线,直线,可得

,所以

其他情况,由对称性,同理可得.

②当直线斜率存在时,设直线的方程为

∵直线与圆相切,

∴圆心O到直线的距离为,即

,则

联立,消元y,整理得

.

.

.

综上可知成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆AC的上顶点,过A的直线lC交于另一点B,与x轴交于点DO点为坐标原点.

1)若,求l的方程;

2)已知PAB的中点,y轴上是否存在定点Q,使得?若存在,求Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为.

1)当时,证明:函数上单调递增;

2)若,讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂质检部门要对该厂流水线生产出的一批产品进行检验,如果检查到第件仍未发现不合格品,则此次检查通过且认为这批产品合格,如果在尚未抽到第件时已检查到不合格品则拒绝通过且认为这批产品不合格.设这批产品的数量足够大,可以认为每次检查查到不合格品的概率都为,即每次抽查的产品是相互独立的.

1)若,求这批产品能够通过检查的概率;

2)已知每件产品质检费用为50元,若,设对这批产品的质检个数记作,求的分布列;

3)在(2)的条件下,已知1000批此类产品,若,则总平均检查费用至少需要多少元?(总平均检查费用每批次平均检查费用批数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系内,点 在曲线,(为参数,)上运动,以为极轴建立极坐标系.直线的极坐标方程为.

()写出曲线的标准方程和直线的直角坐标方程;

()若直线与曲线相交于两点,点在曲线上移动,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某十字路口的花圃中央有一个底面半径为的圆柱形花柱,四周斑马线的内侧连线构成边长为的正方形.因工程需要,测量员将使用仪器沿斑马线的内侧进行测量,其中仪器的移动速度为,仪器的移动速度为.若仪器与仪器的对视光线被花柱阻挡,则称仪器在仪器的“盲区”中.

1)如图,斑马线的内侧连线构成正方形,仪器在点处,仪器上距离点处,试判断仪器是否在仪器的“盲区”中,并说明理由;

2)如图,斑马线的内侧连线构成正方形,仪器从点出发向点移动,同时仪器从点出发向点移动,在这个移动过程中,仪器在仪器的“盲区”中的时长为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的正方形,中点,点上且平面延长线上,,交,且

(1)证明:平面

(2)设点在线段上,若二面角,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于MN两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若曲线在点处的切线与直线垂直,求的值与曲线在点处的切线方程;

(Ⅱ)若,且当时, 恒成立,求的最大值.(

查看答案和解析>>

同步练习册答案