精英家教网 > 高中数学 > 题目详情

(本题满分16分)

如图,某新建小区有一片边长为1(单位:百米)的正方形剩余地块ABCD,中间部分MNK是一片池塘,池塘的边缘曲线段MN为函数的图象,另外的边缘是平行于正方形两边的直线段。为了美化该地块,计划修一条穿越该地块的直路(宽度不计),直路与曲线段MN相切(切点记为P),并把该地块分为两部分。记点P到边AD距离为表示该地块在直路左下部分的面积。

(1)求的解析式;

(2)求面积的最大值。

(1)因为,所以

所以过点的切线方程为,即,……2分 

,得,令,得.

所以切线与轴交点,切线与轴交点.………………4分 

①当时,切线左下方的区域为一直角三角形,

所以.………………………………………………6分

②当时,切线左下方的区域为一直角梯形,

,……………………………………………8分 

③当时,切线左下方的区域为一直角梯形,

所以.

综上…………………………………………10分

(2)当时,  ,……………………12分

时, ,………………………14分

所以.…………………………………………………………………16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题满分16分)两个数列{an},{bn},满足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(参考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求证:{bn}为等差数列的充要条件是{an}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)本题共有2个小题,第1小题满分8分,第2小题满分8分.

已知函数是常数,且),对定义域内任意),恒有成立.

(1)求函数的解析式,并写出函数的定义域;

(2)求的取值范围,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)已知数列的前项和为,且.数列中,

 .(1)求数列的通项公式;(2)若存在常数使数列是等比数列,求数列的通项公式;(3)求证:①;②

查看答案和解析>>

科目:高中数学 来源:江苏省私立无锡光华学校2009—2010学年高二第二学期期末考试 题型:解答题

本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4;求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题

(本题满分16分;第(1)小题5分,第(2)小题5分,第三小题6分)

已知函数

(1)判断并证明上的单调性;

(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值;

(3)若上恒成立 , 求的取值范围.

 

查看答案和解析>>

同步练习册答案