精英家教网 > 高中数学 > 题目详情

【题目】将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间[0, ]和[2a, ]上均单调递增,则实数a的取值范围是(
A.[ ]
B.[ ]
C.[ ]
D.[ ]

【答案】A
【解析】解:将函数f(x)=2cos2x的图象向右平移 个单位后得到函数g(x)的图象, 得g(x)=2cos2(x﹣ )=2cos(2x﹣ ),
,得
当k=0时,函数的增区间为[ ],当k=1时,函数的增区间为[ ].
要使函数g(x)在区间[0, ]和[2a, ]上均单调递增,
,解得a∈[ ].
故选:A.
【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题:集合的子集个数有②定义在上的奇函数必满足;③既不是奇函数又不是偶函数;④偶函数的图像一定与轴相交;⑤上是减函数其中真命题的序号是 ______________(把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.

(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;

(2)从所抽取的70分以上的学生中再随机选取4人.

①记表示选取4人的成绩的平均数,求

②记表示测试成绩在80分以上的人数,求的分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个结论:
①已知X服从正态分布N(0,σ2),且P(﹣2≤X≤2)=0.6,则P(X>2)=0.2;
②若命题 ,则¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是
其中正确的结论的个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品要了解年广告费(单位:万元)对年利润(单位:万元)的影响,对近4年的年广告费和年利润数据作了初步整理,得到下面的表格:

广告费

2

3

4

5

年利润

26

39

49

54

(Ⅰ)用广告费作解释变量,年利润作预报变量,建立关于的回归直线方程;

(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列三角形数表:
假设第n行的第二个数为
(1)归纳出an+1与an的关系式,并求出an的通项公式;
(2)设anbn=1(n≥2),求证:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,解不等式

2)是否存在实数,使不等式对一切实数恒成立?若存在,求出的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌粒种子中抽取粒进行检测,现将这粒种子编号如下,若从随机数表第行第列的数开始向右读,则所抽取的第粒种子的编号是 .(下表是随机数表第行至第行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的有________(只填序号)

①若直线与平面有无数个公共点,则直线在平面内;

②若直线l上有无数个点不在平面α,lα;

③若两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;

④若直线l与平面α平行,l与平面α内的直线平行或异面;

⑤若平面α∥平面β,直线aα,直线bβ,则直线ab.

查看答案和解析>>

同步练习册答案