精英家教网 > 高中数学 > 题目详情
已知正项数列{an} 满足Sn+Sn-1=tan2+2(n≥2,t>0),a1=1,其中Sn是数{an} 的前n项和.
(1)求a2及通项an
(2)记数列{
1anan+1
}的前n项和为Tn,若Tn<2对所有的n∈N+都成立,求证:0<t≤1.
分析:(1)将n=2代入已知等式,求出a2,仿写另一个等式,两个式子相减得到数列的项的递推关系,利用等差数列的定义及等差数列的通项公式求得.
(2)根据第(1)问题结论利用裂项的方法即可求的不等式左边当n≥2时的前n项和,进而问题转化为t2(1-
1
n
)<2对于n≥2,n∈N*恒成立,再结合放缩法即可获得问题的解答.
解答:解:(1)a1=1,S2+S1=ta22+2得a2=0(舍去)或a2=
1
t

又Sn+Sn-1=tan2+2    (1)
Sn-1+Sn-2=tan-12+2(n≥3)(2)
(1)-(2)得an+an-1=t(an2-an-12)(n≥3),
因为数列{an}为正项数列,∴an-an-1=
1
t
(n≥3)

即数列{an}从第二项开始是公差为
1
t
的等差数列.∴an
1(n=1)
n-1
t
(n≥2)
----7 分
(2)当n=时T1=t<2;
n≥2时,Tn=t+
t2
1×2
+
t2
2×3
+…+
t2
(n-1)n
=t+t2
n-1
n

要使Tn<2对所有n∈N*恒成立,只t+t2
n-1
n
≤2成立,
故0<t≤1得证----(14分)
点评:本题考查的是数列与不等式的综合类问题.在解答的过程当中充分体现了通项与前n项和的关系、等差数列的知识、分类讨论的思想以及恒成立的思想和问题转化的能力.值得同学们体会反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正项数列{an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求证:数列{
an
2n+1
}
为等差数列,并求数列{an}的通项an
(2)设bn=
1
an
,求数列{bn}的前n项和为Sn,并求Sn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:称
n
a1+a2+…+an
为n个正数a1,a2,…,an的“均倒数”,已知正项数列{an}的前n项的“均倒数”为
1
2n
,则
lim
n→∞
nan
sn
(  )
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列an中,a1=2,点(
an
an+1)
在函数y=x2+1的图象上,数列bn中,点(bn,Tn)在直线y=-
1
2
x+3
上,其中Tn是数列bn的前项和.(n∈N+).
(1)求数列an的通项公式;
(2)求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求证:数列{bn}为等比数列;
(2)记Tn为数列{
1
log2bn+1log2bn+2
}
的前n项和,是否存在实数a,使得不等式Tn<log0.5(a2-
1
2
a)
对?n∈N+恒成立?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an},Sn=
1
8
(an+2)2

(1)求证:{an}是等差数列;
(2)若bn=
1
2
an-30
,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案