已知函数.
(Ⅰ)解不等式: ;
(Ⅱ)若,求证:≤.
科目:高中数学 来源: 题型:解答题
某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:,只有当污染河道水中碱的浓度不低于时,才能对污染产生有效的抑制作用.
(Ⅰ) 如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(Ⅱ) 第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.
(Ⅰ) 当0<x≤200时,求函数v(x)的表达式;
(Ⅱ) 当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到个位,参考数据)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
函数和的图像如图所示,设两函数的图像交于点.
(1)请指出示意图中曲线分别对应哪一个函数?
(2),且,指出的值,并说明理由;
(3)结合函数图像示意图,请把
四个数按从小到大的顺序排列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数,及函数。
关于的不等式的解集为,其中为正常数。
(1)求的值;
(2)R如何取值时,函数存在极值点,并求出极值点;
(3)若,且,求证: 。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大,并求出此最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业。分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(0<x<100)。而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a万元。
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.
(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com