精英家教网 > 高中数学 > 题目详情
19.下列命题中:(1)x+$\frac{1}{x}$的最小值是2;(2)$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$的最小值是2;(3)$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2;(4)2-3x-$\frac{4}{x}$的最小值是2,其中正确的命题是(2).

分析 (1)当x<0时,y=x+$\frac{1}{x}$<0,不成立;,(2)y=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$=$\sqrt{{x}^{2}+1}$+$\frac{1}{\sqrt{{x}^{2}+1}}$≥2;
(3)y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$=$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$≥2+$\frac{1}{2}$=$\frac{5}{2}$;(4)当x>0时,y=2-3x-$\frac{4}{x}$的最大值是2-4$\sqrt{3}$,当x<0时,最小值是2+4$\sqrt{3}$,不成立.

解答 解:(1)当x>0时,y=x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,其最小值是2;
当x=0时,y=x+$\frac{1}{x}$不存在;
当x<0时,y=x+$\frac{1}{x}$=-(-x-$\frac{1}{x}$)≤-2 $\sqrt{(-x)•(\frac{1}{-x})}$=-2,其最大值是-2.
故(1)不成立;
(2)y=$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$=$\sqrt{{x}^{2}+1}$+$\frac{1}{\sqrt{{x}^{2}+1}}$≥2;当且仅当x=0时“=”成立;
故(2)成立;
(3)y=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$=$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$≥2+$\frac{1}{2}$=$\frac{5}{2}$;
∴y的最小值是$\frac{5}{2}$,
故(3)错误;
(4)当x>0时,y=2-3x-$\frac{4}{x}$≤2-2$\sqrt{3x•\frac{4}{x}}$=2-4$\sqrt{3}$,最大值是2-4$\sqrt{3}$,
当x=0时,y=2-3x-$\frac{4}{x}$不存在,
当x<0时,y=2-3x-$\frac{4}{x}$≥2+2$\sqrt{(-3x)•(\frac{4}{-x})}$=2+4$\sqrt{3}$,最小值是2+4$\sqrt{3}$,
故(4)不成立,
故答案为:(2).

点评 本题考查基本不等式的性质及其应用,解题时要注意均值定理成立的条件:“一正,二定,三相等”,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.以抛物线x2=2my(m>0)的顶点O为圆心的圆,截该抛物线的准线所得的弦长为$\sqrt{3}$m
(Ⅰ)求圆C的方程;
(Ⅱ)过圆C上任一点M作该圆的切线l,它与椭圆$\frac{x^2}{a}+\frac{y^2}{2}$=1(a∈R,且a>2)相交于A、B两点,当OA⊥OB时,求m的可能取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知sin2x=$\frac{sinθ+cosθ}{2}$,cos2x=sinθcosθ,那么cos2x的值是$\frac{-1-\sqrt{33}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是椭圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设计一幅宣传画,要求画面为矩形,面积为4840cm2,画面的底与高的比为λ(λ>0),画面的上、下各留8cm空白,左、右各留5cm的空白.
(1)求宣传画所用矩形纸张面积S=f(λ)的表达式,并求S的最小值;
(2)根据实际情况,需要λ∈[1,$\frac{3}{2}$]体现宣传画的美感,请你确定画面的底与高的尺寸,使宣传画所用纸张面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,正方体ABCD-A′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥,求:
(1)三棱锥A′-BC′D的表面积与正方体表面积的比值;
(2)三棱锥A′-BC′D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.试判断函数f(x)=$\frac{1+sinx-cosx}{1+cosx+sinx}$在下列区间上的奇偶性.
(1)x∈(-$\frac{π}{2}$,$\frac{π}{2}$);
(2)x∈[-$\frac{π}{2}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知在△ABC中,∠C=90°,∠BAC与∠ABC的角平分线交于点I,求证:AI•BI=$\sqrt{2}$AB•r(r为内切圆I的半径).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求棱长为8的正三棱锥的表面积和体积.

查看答案和解析>>

同步练习册答案