精英家教网 > 高中数学 > 题目详情
(本题满分8分)
如图,A1A是圆柱的母线,AB是圆柱底面圆的直径, C是底面圆周上异于A,B的任意一点,A1A= AB=2.
(Ⅰ)求证: BC⊥平面A1AC;
(Ⅱ)求三棱锥A1-ABC的体积的最大值.
(Ⅰ)略
(Ⅱ)时,三棱锥A1-ABC的体积的最大值为.   
证明:∵C是底面圆周上异于A,B的任意一点,且AB是圆柱底面圆的直径,
∴BC⊥AC, ∵AA1⊥平面ABC,BCÌ平面ABC,∴AA1⊥BC,
∵AA1∩AC=A,AA1Ì平面AA1 C,ACÌ平面AA1 C,
∴BC⊥平面AA1C. (3分)
(2)设AC=x,在Rt△ABC中, (0<x<2) ,
(0<x<2),  (5分
.
∵0<x<2,0<x2<4,∴当x2=2,
时,三棱锥A1-ABC的体积的最大值为.  (8分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分).有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个边长为的小正方形,剰余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的的容积V1(用表示);
(2)经过设计(1)的方法,计算得到当时,Vl取最大值,为了材料浪费最少,工人师傅还实践出了其它焊接方法,请写出与(1)的焊接方法更佳(使材料浪费最少,容积比Vl大)的设计方案,并计算利用你的设计方案所得到的容器的容积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题共12分)如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G
(1)AE平面BCE
(2)AE//平面BFD
(3)锥C-BGF的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明PA//平面BDE;
(Ⅱ)求二面角B—DE—C的平面角的余弦值;
(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)

已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥P—ABCD中,AB∥CD,CD=2AB,AB平面PAD,E为PC的中点.
(1)求证:BE∥平面PAD;
(2)若ADPB,求证:PA平面ABC    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体的棱长为2,动点E、F在棱上。点Q是棱CD的中点,动点P在棱AD上,若EF=1,DP=xE=yxy大于零),则
三棱锥P-EFQ的体积
A.与xy都有关B.与xy都无关
C.与x有关,与y无关D.与y有关,与x无关

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在北纬圈上有A、B两点,它们的经度相差,A、B两地沿纬线圈的弧长与A、B两点的球面距离的比为(  )
A.    B.   C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列几何体中,一定是长方体的是( )
A.直平行六面体B.对角面为全等矩形的四棱柱
C.底面是矩形的直棱柱D.侧面是矩形的四棱柱

查看答案和解析>>

同步练习册答案