精英家教网 > 高中数学 > 题目详情
max{a,b}=
a,a≥b
b,a<b
,f(x)=max{|x+1|,|x-2|},若关于x的方程f(x)=m有解,则m的范围
 
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:根据题中所给条件通过比较|x+1|、|x-2|哪一个更大,先画出f(x)的图象,据此函数的图象得到f(x)min=f(
1
2
)=
3
2
,然后根据图象交点的情况即可求出实数m的取值范围.
解答: 解:∵max{a,b}=
a,a≥b
b,a<b

∴f(x)=max{|x+1|,|x-2|}的图象如下图所示:

由图可得f(x)的最小值为
3
2

若关于x的方程f(x)=m有解,则m≥
3
2

故答案为:m≥
3
2
点评:本题主要考查函数的最值及其几何意义.这种先给出定义,让根据条件求解析式是经常考到点.数形结合是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知ax2-2x>ax+4(a>0且a≠1),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=3是函数f(x)=alnx+x2-10x的一个极值点.
(1)求实数a;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C所对边的长依次为a,b,c,若cosA=
3
4
,cosC=
1
8

(Ⅰ)求cos B的值;    
(Ⅱ)若|
AC
+
BC
|=
46
,求BC边上中线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算与化简
(1)(0.008)-
2
3
÷(0.02)-
1
2
×(0.32)
1
2

(2)
a
4
3
-8a
1
3
b
a
2
3
+2
3ab
+4b
2
3
÷[(1-2
3
b
a
)×
3a
].

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f(
1
2
)=1
若对于x1、x2∈(0,+∞),都有 
x1-x2
f(x1)-f(x2)
<0.
(1)求f(1),f(2);
(2)解不等式f(-x)+f(2-x)≥-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为R,f(-2)=2013,对任意x∈R都有f′(x)<2x成立,则不等式f(x)<x2+2009的解集是(  )
A、(-2,2)
B、(-2,+∞)
C、(-∞,-2)
D、(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(a-i)2=2i,其中i是虚数单位,那么实数a的值为(  )
A、1B、2C、-1D、-2

查看答案和解析>>

同步练习册答案