精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)讨论的单调性.

【答案】(1); (2).

【解析】

(1) 欲求在点(2,f(2))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决;

(2)求出a分类讨论,解不等式即可得到的单调性与极值点.

(1)当时,,则

所以所求切线的斜率为.

故所求的切线方程为,即.

(2)的定义域为

.

①当时,

时,;当时,.

所以上单调递减,在上单调递增.

②当时,令,得.

(i)当时,.

时,,当时,.

所以上单调递增,在上单调递减.

(ii)当时,恒成立,

所以上单调递增.

(iii)当时,

时,;当时,.

所以上单调递增,在上单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为节能环保,推进新能源汽车推广和应用,对购买纯电动汽车的用户进行财政补贴,财政补贴由地方财政补贴和国家财政补贴两部分组成. 某地补贴政策如下(表示纯电续航里程):

三个纯电动汽车店分别销售不同品牌的纯电动汽车,在一个月内它们的销售情况如下:

(每位客户只能购买一辆纯电动汽车

(1)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是店纯电动汽车且享受补贴不低于3.5万元的概率;

(2)从上述两个纯电动汽车店的客户中各随机选一人,求恰有一人享受5万元财政补贴的概率;

(3)从上述三个纯电动汽车店的客户中各随机选一人, 这3个人享受的财政补贴分别记为. 求随机变量的分布列. 试比较数学期望的大小;比较方差 的大小. (只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)若,令,若的两个极值点,且,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】洛萨科拉茨Collatz是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n是奇数,则将它乘3加,不断重复这样的运算,经过有限步后,一定可以得到如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,对科拉茨猜想,目前谁也不能证明,更不能否定现在请你研究:如果对正整数首项按照上述规则施行变换注:1可以多次出现后的第八项为1,则n的所有可能的取值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】洛萨科拉茨Collatz是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n是奇数,则将它乘3加,不断重复这样的运算,经过有限步后,一定可以得到如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,对科拉茨猜想,目前谁也不能证明,更不能否定现在请你研究:如果对正整数首项按照上述规则施行变换注:1可以多次出现后的第八项为1,则n的所有可能的取值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国武汉于20191018日至20191027日成功举办了第七届世界军人运动会.来自109个国家的9300余名运动员同台竞技.经过激烈的角逐,奖牌榜的前3名如下:

国家

金牌

银牌

铜牌

奖牌总数

中国

133

64

42

239

俄罗斯

51

53

57

161

巴西

21

31

36

88

某数学爱好者采用分层抽样的方式,从中国和巴西获得金牌选手中抽取了22名获奖代表.从这22名中随机抽取3人, 则这3人中中国选手恰好1人的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.

(1)若在一局中甲先摸,求甲在该局获胜的概率;

(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)讨论的单调性;

(2)当时,证明:

(3)试比较 ,并证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)是给定实数,解关于的不等式

(2)是一个给定实数,试求出1的取值范围,使得不等式能满足1中的式子

查看答案和解析>>

同步练习册答案