科目:高中数学 来源: 题型:
(本题满分12分) 已知函数.
(Ⅰ) 求f 1(x);
(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an;
(Ⅲ) 设bn=(32n-8),求数列{bn}的前项和Tn
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分12分) 已知函数.
(Ⅰ) 求f 1(x);
(Ⅱ) 若数列{an}的首项为a1=1,(nÎN+),求{an}的通项公式an;
(Ⅲ) 设bn=an+12+an+22+¼+a2n+12,是否存在最小的正整数k,使对于任意nÎN+有bn<成立. 若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数.(Ⅰ) 求f –1(x);(Ⅱ) 若数列{an}的首项为a1=1,(n??N+),求{an}的通项公式an;(Ⅲ) 设bn=an+12+an+22+??+a2n+12,是否存在最小的正整数k,使对于任意n??N+有bn<成立. 若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
. (本题满分12分)已知函数.(Ⅰ) 求f –1(x);(Ⅱ) 若数列{an}的首项为a1=1,(n??N+),求{an}的通项公式an;(Ⅲ) 设bn=an+12+an+22+??+a2n+12,是否存在最小的正整数k,使对于任意n??N+有bn<成立. 若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com