精英家教网 > 高中数学 > 题目详情
(14分)如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N为线段PB的中点,求证:EN//平面ABCD;
(2)求点到平面的距离.
(1)只需证NE∥FC; (2)

试题分析:(1)解法1:连结AC与BD交于点F,连结NF,…………………..1分
∵F为BD的中点,∴NF∥PD且NF=PD……………………………….3
又EC∥PD,且EC=PD,
∴NF∥EC,且NF=EC,∴四边形NFCE为平行四边形,…………… 4
∴NE∥FC. …………………. …………….5
∵NE平面ABCD,且平面ABCD   所以EN//平面ABCD;………………….6
(2)(体积法)连结DE,由题,且,故是三棱锥的高,
…………………. ………………7
在直角梯形中,可求得,且  由(1)所以………9
,…………………11
,…………………………12
设所求的距离为,则……………..14
解法2:(1)以点D为坐标原点,以AD所在的直线为x轴建立空间直角坐标系如图所示
………………………………1,
则B(2,2,0),C(0,2,0),P(0,0,2),E(0,2,1),N(1,1,1),……………2
=(1,-1,0), ……………………..3

,…………… ……………4
是平面ABCD的法向量
∵NE平面ABCD       所以EN//平面ABCD;……………………………….6
(2)由(1)可知,…………….8
设平面的法向量为
…………………. ……………10
解得其中一个法向量为………………………..11
到平面的距离为……14
点评:设A是平面α外一点,B是α内一点,为α的一个法向量,则点A到平面α的距离
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且

(1)求证:平面⊥平面
(2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知二面角αPQβ的大小为60°,点C为棱PQ上一点,AβAC=2,∠ACP=30°,则点A到平面α的距离为(      )
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为________. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;
(2)当为何值时,在棱上存在点,使平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥P--ABCD中,PB底面ABCD.底面ABCD为直角梯形,AD∥BC,AB=AD=PB=3,BC=6.点E在棱PA上,且PE=2EA.

(1)求异面直线PA与CD所成的角;
(2)求证:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图所示,在棱长为4的正方体ABCD—A1B1C1D1中,点E是棱CC1的中点。
 
(I)求三棱锥D1—ACE的体积;
(II)求异面直线D1E与AC所成角的余弦值;
(III)求二面角A—D1E—C的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m、是直线,a、β是平面,给出下列命题:
(1)若l垂直于α内两条相交直线,则l⊥α;
(2)若l平行于α,则l平行于α内的所有直线;
(3)若mα,lβ,且l⊥m,则α⊥β;
(4)若lβ,且l⊥α,则α⊥β;
(5)若mα,lβ,且α∥β,则l∥m.
其中正确的命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间三条直线异面,且异面,则(  )
A.异面.B.相交.
C.平行.D.异面、相交、平行均有可能.

查看答案和解析>>

同步练习册答案