ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
¢ÙÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇÒam+an=as+at£¨m¡¢n¡¢s¡¢t¡ÊN*£©£¬Ôòm+n=s+t£»
¢ÚÈôSnÊǵȲîÊýÁÐ{an}µÄÇ°nÏîµÄºÍ£¬ÔòSn£¬S2n-Sn£¬S3n-S2n³ÉµÈ²îÊýÁУ»
¢ÛÈôSnÊǵȱÈÊýÁÐ{an}µÄÇ°nÏîµÄºÍ£¬ÔòSn£¬S2n-Sn£¬S3n-S2n³ÉµÈ±ÈÊýÁУ»
¢ÜÈôSnÊǵȱÈÊýÁÐ{an}µÄÇ°nÏîµÄºÍ£¬ÇÒSn=Aqn+B£»£¨ÆäÖÐA¡¢BÊÇ·ÇÁã³£Êý£¬n¡ÊN*£©£¬ÔòA+BΪÁ㣮
·ÖÎö£º¢ÙÈ¡ÊýÁÐ{an}Ϊ³£ÊýÁУ¬¼´¿ÉÍƳö¸ÃÃüÌâÊǼÙÃüÌ⣻
¢Ú¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊ£¬ÍƳö2£¨S2n-Sn£©=Sn+£¨S3n-S2n£©£¬¼´¿ÉµÃµ½Sn£¬S2n-Sn£¬S3n-S2n£¬¡­ÎªµÈ²îÊýÁУ»
¢ÛÀûÓõȱÈÊýÁÐan=£¨-1£©n£¬ÅжÏÑ¡ÏîÊÇ·ñÕýÈ·£»
¢Ü¸ù¾ÝÊýÁеÄÇ°nÏîµÄºÍ¼õÈ¥µÚn-1ÏîµÄºÍµÃµ½ÊýÁеĵÚnÏîµÄͨÏʽ£¬¼´¿ÉµÃµ½´ËµÈ±ÈÊýÁеÄÊ×ÏîÓ빫±È£¬¸ù¾ÝÊ×ÏîºÍ¹«±È£¬ÀûÓõȱÈÊýÁеÄÇ°nÏîºÍµÄ¹«Ê½±íʾ³öÇ°nÏîµÄºÍ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º¢ÙÈ¡ÊýÁÐ{an}Ϊ³£ÊýÁУ¬¶ÔÈÎÒâm¡¢n¡¢s¡¢t¡ÊN*£¬¶¼ÓÐam+an=as+at£¬¹Ê´í£»
¢ÚÉèµÈ²îÊýÁÐanµÄÊ×ÏîΪa1£¬¹«²îΪd£¬
ÔòSn=a1+a2+¡­+an£¬S2n-Sn=an+1+an+2+¡­+a2n=a1+nd+a2+nd+¡­+an+nd=Sn+n2d£¬
ͬÀí£ºS3n-S2n=a2n+1+a2n+2+¡­+a3n=an+1+an+2+¡­+a2n+n2d=S2n-Sn+n2d£¬
¡à2£¨S2n-Sn£©=Sn+£¨S3n-S2n£©£¬
¡àSn£¬S2n-Sn£¬S3n-S2nÊǵȲîÊýÁУ¬´ËÑ¡ÏîÕýÈ·£»
¢ÛÉèan=£¨-1£©n£¬ÔòS2=0£¬S4-S2=0£¬S6-S4=0£¬
¡à´ËÊýÁв»ÊǵȱÈÊýÁУ¬´ËÑ¡Ïî´í£»
¢ÜÒòΪan=Sn-Sn-1=£¨Aqn+B£©-£¨Aqn-1+B£©=Aqn-Aqn-1=£¨Aq-1£©¡Áqn-1£¬
ËùÒÔ´ËÊýÁÐΪÊ×ÏîÊÇAq-1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬ÔòSn=
(Aq-1)(1-qn)
1-q
£¬
ËùÒÔB=
Aq-1
1-q
£¬A=-
Aq-1
1-q
£¬¡àA+B=0£¬¹ÊÕýÈ·£»
¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄÐÔÖÊ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

1¡¢ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

2¡¢Èôº¯Êýf£¨x£©Î¨Ò»µÄÒ»¸öÁãµãͬʱÔÚÇø¼ä£¨0£¬16£©£¬£¨0£¬8£©£¬£¨0£¬4£©£¬£¨0£¬2£©ÄÚ£¬ÄÇôÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÁÙÒʶþÄ££©¶ÔÓÚº¯Êýf£¨x£©=
3
sinx+cosx£¬ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèlÊÇÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬µÄƽÃ棬ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ
¢Ú
¢Ú

¢ÙÈôl¡Î¦Á£¬l¡Î¦Â£¬Ôò¦Á¡Î¦Â£»  ¢ÚÈôl¡Î¦Á£¬l¡Í¦Â£¬Ôò¦Á¡Í¦Â£»  ¢ÛÈô¦Á¡Í¦Â£¬l¡Í¦Á£¬Ôòl¡Í¦Â£»  ¢ÜÈô¦Á¡Í¦Â£¬l¡Î¦Á£¬Ôòl¡Í¦Â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸