精英家教网 > 高中数学 > 题目详情

【题目】已知函数),).

(1)讨论的单调性;

(2)设 ,若)是的两个零点,且

试问曲线在点处的切线能否与轴平行?请说明理由.

【答案】(1)时, 单调递增, ;(2)处的切线不能平行于. 。

【解析】试题分析:(1)先对函数求导,再依据到函数值与函数单调性之间的关系分类探求单调区间;(2)先假设曲线在点处的切线能否与轴平行,然后依据假设建立方程组,最后再构造函数运用导数的知识断定假设不成立

解:(

(1)当时, 单调递增,

(2)当时,

-

0

+

极小值

()

假设处的切线能平行于.

由假设及题意得:

.................

................

.................

.............④

-得,

.................⑤

由④⑤得,

.则上式可化为

设函数,则

,

所以函数上单调递增.

于是,当时,有,即与⑥矛盾.

所以处的切线不能平行于.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kx+log9(9x+1)(k∈R)是偶函数.
(1)求k的值;
(2)若函数g(x)=log9(a3x a)的图象与f(x)的图象有且只有一个公共点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列 ,﹣ ,﹣ ,…的一个通项公式为(
A.an=(﹣1)n
B.an=(﹣1)n
C.an=(﹣1)n+1
D.an=(﹣1)n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足 acosC﹣csinA=0.
(1)求角C的大小;
(2)已知b=4,△ABC的面积为6 ,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,an+1 =1,记Sn=a12+a22+…+an2 , 若S2n+1﹣Sn 对任意n∈N*恒成立,则正整数m的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如下图,则该几何体的体积为( )

A. 18 B. 20 C. 24 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C: (a>b>0).称圆心在原点O,半径为 的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F( ,0),其短轴上的一个端点到点F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1 , l2 , 使得l1 , l2与椭圆C都只有一个交点,试判断l1 , l2是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)

已知如下等式:

时,试猜想的值,并用数学归纳法给予证明.

查看答案和解析>>

同步练习册答案