精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若方程7个不同的实数解,的取值范围(

A.(2,6)B.(6,9)C.(2,12)D.(4,13)

【答案】C

【解析】

先画出的图象,,由图象可转化问题为3个解,4个解,则分别讨论①,;②,;③,,再利用线性规划求解.

由题,,

,,

,;当,,

所以上单调递增,上单调递减,

所以,

,,;当,,,

画出的图象,如图所示,

因为7个不同的实数解,

,,

为方程的解,

则由图象可知3个解,4个解,

,,代入方程中可得,与条件矛盾,舍去;

,,,

,,

则可行域如图所示,,,

平移直线,与点相交时截距最小,与点相交时截距最大,

因为点,,所以

,,,,

则可行域如图所示,即为线段,

平移直线,与点相交时截距最小,与点相交时截距最大,

因为点,,所以,

综上,,

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆交于不同的两点,线段的中点为,且直线与直线的斜率之积为.若直线与直线交于点,与直线交于点,且点为直线上一点.

1)求的轨迹方程;

2)若为椭圆的上顶点,直线轴交点,记表示面积,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】孙子定理是中国古代求解一次同余式组的方法,是数论中一个重要定理,最早可见于中国南北朝时期的数学著作《孙子算经》,年英国来华传教士伟烈亚力将其问题的解法传至欧洲,年英国数学家马西森指出此法符合年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.这个定理讲的是一个关于整除的问题,现有这样一个整除问题:将个整数中能被除余且被除余的数按由小到大的顺序排成一列构成一数列,则此数列的项数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某高校艺术类考试中,共有6位选手参加,其中3位女生,3位男生,现这6名考生依次出场进行才艺展出,如果3位男生中任何2人都不能连续出场,且女生甲不能排第一个,那么这6名考生出场顺序的排法种数为( )

A.108B.120C.132D.144

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)讨论的单调性,设的最小值为,并求证:

2)若有三个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱平面内一点,点在直线上运动,若直线所成角的最小值与直线和平面所成角的最大值相等,则满足条件的点的轨迹是(

A.直线的一部分B.圆的一部分C.抛物线的一部分D.椭圆的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水果批发商经销某种水果(以下简称水果),购入价为300/袋,并以360/袋的价格售出,若前8小时内所购进的水果没有售完,则批发商将没售完的水果以220/袋的价格低价处理完毕(根据经验,2小时内完全能够把水果低价处理完,且当天不再购入).该水果批发商根据往年的销量,统计了100水果在每天的前8小时内的销售量,制成如下频数分布条形图.

表示水果一天前8小时内的销售量,表示水果批发商一天经营水果的利润,表示水果批发商一天批发水果的袋数.

1)若,求的函数解析式;

2)假设这100天中水果批发商每天购入水果15袋或者16袋,分别计算该水果批发商这100天经营水果的利润的平均数,以此作为决策依据,每天应购入水果15袋还是16袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为2的正方形,平面分别是棱的中点.

1)求证:平面

2)若,求平面将三棱锥分成的两部分的体积中较大部分的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数fx)的单调性;

2)若函数gx)=fx)﹣lnx2个不同的极值点x1x2x1x2),求证:.

查看答案和解析>>

同步练习册答案