精英家教网 > 高中数学 > 题目详情
5.将函数图象y=4sin(6x+$\frac{3π}{5}$)上所有点的横坐标变为原来的3倍,再向右平移$\frac{π}{5}$个单位长度,得到函数y=g(x)的图象,则函数y=g(x)图象的对称轴方程是x=$\frac{kπ}{2}$+$\frac{3π}{20}$,k∈Z..

分析 利用函数y=Asin(ωx+φ)的图象变换规律可求g(x),令2x+$\frac{π}{5}$=kπ+$\frac{π}{2}$,k∈Z,可得函数y=g(x)图象的对称轴方程,从而得解.

解答 解:将函数图象y=4sin(6x+$\frac{3π}{5}$)上所有点的横坐标变为原来的3倍,
所得的图象对应的函数解析式为y=4sin(2x+$\frac{3π}{5}$),
再向右平移$\frac{π}{5}$个单位长度,得到函数g(x)=4sin[2(x-$\frac{π}{5}$)+$\frac{3π}{5}$]=4sin(2x+$\frac{π}{5}$),
令2x+$\frac{π}{5}$=kπ+$\frac{π}{2}$,k∈Z,可得函数y=g(x)图象的对称轴方程是:x=$\frac{kπ}{2}$+$\frac{3π}{20}$,k∈Z.
故答案为:x=$\frac{kπ}{2}$+$\frac{3π}{20}$,k∈Z.

点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换规律的应用,考查了正弦函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.由0、1、2、3这四个数字,可组成无重复数字的三位偶数有(  )个.
A.8B.12C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若圆C1:(x-1)2+(y-1)2=4与圆C2:x2+y2-8x-10y+m+6=0外切,则m=(  )
A.22B.18C.26D.-24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.长方体的长、宽、高分别为2,2,1,其顶点在同一球面上,则该球的表面积(  )
A.B.C.24πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知O为坐标原点,点A的坐标为(3,-4),将线段OA绕点O逆时针旋转$\frac{π}{2}$至OB,则点B的纵坐标为(  )
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1的一个焦点是(-4,0),则其离心率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某程序框图如图所示,该程序运行输出的结果为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于mn(m,n∈N且m,n≥2)可以按如下的方式进行“分解”,例如72的“分解“中最小的数是1,最大的数是13.若m3的“分解”中最小的数是111,则m=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,当x≥0时.f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,0≤x≤2}\\{f(x-1),x>2}\end{array}\right.$,若函数g(x)=f(x)-k(x-1)恰有4个不同的零点,则实数k的取值范围是(  )
A.[-$\frac{3}{4}$,-$\frac{3}{5}$)∪($\frac{3}{5}$,$\frac{3}{4}$]B.[-1,-$\frac{3}{4}$)∪($\frac{3}{4}$,1]C.($\frac{3}{5}$,$\frac{3}{4}$]D.[-$\frac{3}{4}$,-$\frac{3}{5}$)

查看答案和解析>>

同步练习册答案