精英家教网 > 高中数学 > 题目详情
已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8,
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得弦长L的取值范围.
解:(1)由x+ky-3=0,得(x-3)+ky=0,所以直线过定点(3,0),即F(3,0),
设椭圆C的方程为
,解得
所以椭圆C的方程为
(2)因为点P(m,n)在椭圆C上运动,所以
从而圆心O到直线l:mx+ny=1的距离为
所以直线l与圆O恒相交,
又直线l被圆O截得的弦长为

由于0≤m2≤25,所以,则L∈
即直线l被圆O截得的弦长的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.

查看答案和解析>>

科目:高中数学 来源:杭州一模 题型:解答题

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷B(五)(解析版) 题型:解答题

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州市高考数学考前查漏补缺试卷(文科)(解析版) 题型:解答题

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省重点中学高考数学一轮复习课时练精品:5-8 (解析版) 题型:解答题

已知直线x+ky-3=0所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明:当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交,并求直线l被圆O所截得的弦长L的取值范围.

查看答案和解析>>

同步练习册答案