精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面积;
(2)若BC=2 ,求AB的长.

【答案】
(1)解:因为∠D=2∠B,cos∠B=

所以cosD=cos2B=2cos2B﹣1=﹣

因为∠D∈(0,π),

所以sinD=

因为 AD=1,CD=3,

所以△ACD的面积S= = =


(2)解:在△ACD中,AC2=AD2+DC2﹣2ADDCcosD=12.

所以AC=2

因为BC=2

所以 =

所以 AB=4


【解析】(1)利用已知条件求出D角的正弦函数值,然后求△ACD的面积;(2)利用余弦定理求出AC,通过BC=2 ,利用正弦定理求解AB的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,点的左焦点,点上位于第一象限内的点,关于原点的对称点为,则的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ+cosθ,曲线C3的极坐标方程为θ=
(1)把曲线C1的参数方程化为极坐标方程;
(2)曲线C3与曲线C1交于O、A,曲线C3与曲线C2交于O、B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,是真命题的是(
A.?x0∈R,使得e ≤0
B.
C.?x∈R,2x>x2
D.a>1,b>1是ab>1的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为为坐标原点.

1)求的轨迹方程;

2)当时,求的方程及的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,若是线段上的动点,则下列结论不正确的是(  )

A. 三棱锥的正视图面积是定值

B. 异面直线所成的角可为

C. 异面直线所成的角为

D. 直线与平面所成的角可为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,ABCDAB4BCCD2AA12EE1分别是棱ADAA1的中点

1F是棱AB的中点,证明:直线EE1平面FCC1

2证明:平面D1AC平面BB1C1C

3求点D到平面D1AC的距离

查看答案和解析>>

同步练习册答案