精英家教网 > 高中数学 > 题目详情
14.在△ABC中,tanA=3,面积为10,D为边BC上一动点,CD=λDB.分别作边AB,AC的垂线,垂足分别为E,F,若$\overrightarrow{DE}$•$\overrightarrow{DF}$∈[-$\frac{4}{3}$,-$\frac{9}{8}$],则实数λ范围为[$\frac{1}{3}$,$\frac{1}{2}$]∪[2,3].

分析 由题意可得sinA=$\frac{3\sqrt{10}}{10}$,cosA=$\frac{\sqrt{10}}{10}$,且∠EDF=π-A,|DE|•|DF|•cosA∈[$\frac{9}{8}$,$\frac{4}{3}$]①.再根据S=$\frac{1}{2}$|AB|•|AC|•sinA=$\frac{1}{2}$•$\frac{2S}{(λ+1)•|DE|}$•$\frac{2λS}{(λ+1)|DF|}$•sinA,可得|DE|•|DF|•cosA=$\frac{2λ•S}{{(λ+1)}^{2}}$•sinAcosA ②,结合①②求得λ的范围.

解答 解:由题意可得,∠AED=∠AFD=90°,故A、E、D、F四点共圆,如图所示:
∵tanA=$\frac{sinA}{cosA}$=3,sin2A+cos2A=1,∴sinA=$\frac{3\sqrt{10}}{10}$,cosA=$\frac{\sqrt{10}}{10}$,且∠EDF=π-A.
∵$\overrightarrow{DE}$•$\overrightarrow{DF}$=|DE|•|DF|•cos(π-A)=-|DE|•|DF|•(-cosA)∈[-$\frac{4}{3}$,-$\frac{9}{8}$],
∴|DE|•|DF|•cosA∈[$\frac{9}{8}$,$\frac{4}{3}$]①.
∵$\frac{CD}{DB}$=λ,∴S△ABD=$\frac{S}{1+λ}$,S△ACD=$\frac{λS}{1+λ}$,
∴|AB|=$\frac{{2S}_{△ABD}}{|DE|}$=$\frac{2S}{(λ+1)•|DE|}$,同理求得|AC|=$\frac{2λS}{(λ+1)•|DF|}$.
又S=$\frac{1}{2}$|AB|•|AC|•sinA=$\frac{1}{2}$•$\frac{2S}{(λ+1)•|DE|}$•$\frac{2λS}{(λ+1)|DF|}$•sinA,
∴|DE|•|DF|•cosA=$\frac{2λ•S}{{(λ+1)}^{2}}$•sinAcosA ②,
由①②求得$\frac{3}{16}$≤$\frac{λ}{{(λ+1)}^{2}}$≤$\frac{2}{9}$,即 $\frac{1}{3}$≤λ≤$\frac{1}{2}$,或2≤λ≤3,
故答案为:[$\frac{1}{3}$,$\frac{1}{2}$]∪[2,3].

点评 本题主要考查同角三角函数的基本关系,两个向量的数量积的运算,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.△ABC的三边成等差数列,最大边长为26,且它所对角的余弦值为$\frac{1}{6}$,则最小边长为(  )
A.18B.24C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.M科技公司从45名男员工、30名女员工中按照分层抽样的方法组建了一个5人的科研小组.
(1)求某员工被抽到的概率及科研小组中男女员工的人数;
(2)这个科研小组决定选出两名员工做某项实验,方法是先从小组中选出1名员工做实验,该员工做完后,再从小组内剩下的员工中选一名员工做实验,求选出的两名员工中恰有一名女员工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:x2+mx+1=0有两个不相等的负实数根,q:方程4x2+(4m-2)x+1=0无实数根.
(1)若q为真,求实数m的取值范围;
(2)若p为真q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C的圆心在直线3x+y-5=0上,并且经过原点和点A(3,-1).
(Ⅰ)求圆C的方程.
(Ⅱ)若直线l过点P(1,1)且截圆C所得的弦长为$\frac{{2\sqrt{21}}}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.椭圆x2+$\frac{{y}^{2}}{2}$=a2(a>0)和连接A(1,1),B(3,4)两点的线段没有公共点,那么a的取值范围是(0,$\frac{\sqrt{6}}{2}$)∪($\sqrt{17}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别为PA,BC的中点,且PD=AD=$\sqrt{2}$
(1)求证:MN∥平面PCD;
(2)求证:平面PAC⊥平面PBD.
(3)求三棱锥A-MBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.x,y,z∈R+,且x2+y2+z2=2,则t=$\sqrt{5}$xy+yz的最大值是$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:$\frac{1+sinα}{1-sinα}$=($\frac{1}{cosα}$+tanα)2

查看答案和解析>>

同步练习册答案