精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体ABCDEF中,四边形ABCD为边长为4的正方形,M是BC的中点,EF∥平面ABCD,且EF=2,AE=DE=BF=CF=
(1)求证:ME⊥平面ADE;
(2)求二面角B﹣AE﹣D的余弦值.

【答案】
(1)证明:取AD的中点N,连结NM,NE,

则AD⊥NM,AD⊥NE,

∵NM∩NE=N,∴AD⊥平面NME,∴AD⊥ME,

过E点,作EO⊥NM于O,

根据题意得NO=1,OM=3,NE=2,∴OE= ,EM=2

∴△ENM是直角三角形,∴NE⊥ME,

∴ME⊥面ADE.


(2)解:如图建立空间直角坐标系O﹣xyz,

根据题意得:

A(2,﹣1,0),B(2,3,0),D(﹣2,﹣1,0),E(0,0, ),M(0,3,0),

设平面BAE的法向量 =(x,y,z),

=(0,4,0), =(﹣2,1, ),

,取z=2,得 =( ,0,2),

由(1)知 =(0,﹣3, )为平面ADE的法向量,

设二面角B﹣AE﹣D的平面角为θ,

则cosθ= =

∴二面角B﹣AE﹣D的余弦值为


【解析】(1)取AD的中点N,连结NM,NE,推导出AD⊥ME,过E点,作EO⊥NM于O,推导出NE⊥ME,由此能证明ME⊥面ADE.(2)建立空间直角坐标系O﹣xyz,利用向量法能求出二面角B﹣AE﹣D的余弦值.
【考点精析】通过灵活运用直线与平面垂直的判定,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωx﹣cosωx+m(ω>0,x∈R,m是常数)的图象上的一个最高点 ,且与点 最近的一个最低点是
(1)求函数f(x)的解析式及其单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且 ac,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的非负半轴重合,且长度单位相同,直线的极坐标方程为,曲线(为参数).其中.

(1)试写出直线的直角坐标方程及曲线的普通方程;

(2)若点为曲线上的动点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx+b,a,b为实数.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+3,求a,b的值;
(Ⅱ)若|f′(x)|< 对x∈[2,3]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为,它在点处的切线为直线l.

(1)求直线l的直角坐标方程;

(2)设直线l的交点为P1,P2,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当为何值时,轴为曲线的切线;

(2)用表示中的最小值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列四个命题:

(1)“若,则互为倒数”的逆命题;

(2)“面积相等的三角形全等”的否命题;

(3)“若,则有实数解”的逆否命题;

(4)“若,则”的逆否命题.

其中真命题为( )

A. (1)(2) B. (2)(3) C. (4) D. (1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直四棱柱ABCD—A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A为直角,AB∥CD,AB=4,AD=2,DC=2.

(Ⅰ)求线段BC1的长度;

(Ⅱ)异面直线BC1与DC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
已知在直角坐标系xOy中,曲线C的参数方程为 (φ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρcos(θ﹣ )=2
(Ⅰ)求曲线C在极坐标系中的方程;
(Ⅱ)求直线l被曲线C截得的弦长.

查看答案和解析>>

同步练习册答案