精英家教网 > 高中数学 > 题目详情
设A={x|x2-2x-8<0},B={x|x2+2x-3>0}C={x|x2-3ax+2a2<0}
(1)求A∩B与(?RA)∩?RB);
(2)若C⊆A∩B,求实数a的取值范围.
分析:(1)利用集合间的运算即可得出;
(2)利用集合间的关系和分类讨论的思想方法等即可得出.
解答:解:(1)A={x|-2<x<4},B={x|x<-3或x>1}.
∴A∩B={x|1<x<4}.
CRA={x|x≤-2或x≥4},CRB={x|-3≤x≤1}.
(CRA)∩(CRB)={x|-3≤x≤-2}.
(2)若C⊆(A∩B),
对于集合C,方程x2-2ax+2a2=0,的两根分别为x=2a,a.
①当a=0时,C=∅符合条件.
②当a<0时,2a<a,∴C={x|2a<x<a}不符合条件;
③当a>0时,2a>a,C={x|a<x<2a},此时
a≥1
2a≤4
,解得1≤a≤2.
综上所述:a=0或1≤a≤2.
点评:熟练掌握集合间的关系和分类讨论的思想方法等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A∪B=A∩B,求实数a的值;
(2)若A∩B≠∅,且A∩C=∅,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设[x]表示不大于x的最大整数,集合A={x|x2-2[x]=3},B={x|-3<x<3},则A∩B=
{-1,
7
}
{-1,
7
}

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-3x+2=0},B={x|x2-ax+2=0},B⊆A.
(1)写出集合A的所有子集;
(2)若B非空,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-4x+3<0},B={x|x2-6x+8<0},则A∩B等于
(2,3)
(2,3)

查看答案和解析>>

同步练习册答案