【题目】已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2) 为椭圆上任意一点,若,求的最大值和最小值.
(3)求的面积.
【答案】(1) (2) 最大值为1和最小值为(3)
【解析】试题分析:(1)由离心率及焦点坐标,易得方程;
(2)设则直线的方程为,与椭圆联立由得的范围,又,即可得解;
(3)设直线的方程为,与椭圆联立,利用韦达定理得中点坐标,从而由的斜率,解得,进而得,由点到直线距离求得,利用求解即可.
试题解析:
(1)由已知得, ,
解得,又,
所以椭圆的方程为.
(2)设则直线的方程为,则.
由,得①
, 的最大值为1和最小值为.
(3)设直线的方程为,
由,得①
设的坐标分别为, , 中点为,
则, ,
因为是等腰的底边,所以,
所以的斜率,
解得,此时方程①为,
解得, ,所以, ,
所以,此时,点到直线的距离
,所以的面积.
科目:高中数学 来源: 题型:
【题目】已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.
(1)求证:BC⊥平面APC;
(2)若BC=3,AB=10,求三棱锥B﹣MDC的体积VB﹣MDC .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=0,an+1=an+2 +1
(1)求证数列{ }是等差数列,并求出an的通项公式;
(2)若bn= ,求数列{b}的前n项的和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面是不重合的两个面,下列命题中,所有正确命题的序号是_____.
①若, 分别是平面的法向量,则;
②若, 分别是平面, 的法向量,则;
③若是平面的法向量, 与共面,则;
④若两个平面的法向量不垂直,则这两个平面一定不垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数y=kx+b(k≠0),函数图象如图所示.
(1)根据图象,求一次函数y=kx+b(k≠0)的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车的推广给消费者带来全新消费体验,迅速赢得广大消费者的青睐,然而,同时也暴露出管理、停放、服务等方面的问题,为了了解公众对共享单车的态度(提倡或不提倡),某调查小组随机地对不同年龄段50人进行调查,将调查情况整理如下表:
并且,年龄在和的人中持“提倡”态度的人数分别为5和3,现从这两个年龄段中随机抽取2人征求意见.
(Ⅰ)求年龄在中被抽到的2人都持“提倡”态度的概率;
(Ⅱ)求年龄在中被抽到的2人至少1人持“提倡”态度的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 . (Ⅰ)求圆C的普通方程和直线l的直角坐标方程;
(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2 , 是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com