【题目】已知数列{an}的各项均为正数,其前n项的和为Sn,且对任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n.
(1)求的值;
(2)求证:{an}为等比数列;
(3)已知数列{cn},{dn}满足|cn|=|dn|=an,p(p≥3)是给定的正整数,数列{cn},{dn}的前p项的和分别为Tp,Rp,且Tp=Rp,求证:对任意正整数k(1≤k≤p),ck=dk.
【答案】(1)2;(2)见解析;(3)见解析.
【解析】试题分析:(1)本题采用赋值法,在已知等式中令得得出的关系;(2)也采用赋值法,本题难点在于已知条件中的平方的处理,为此先取和,所得两联立结合(1)可得,然后令得,令得,此两式相除得,因此,即,下面处理方法大家应该很清楚了,由此式有,相应两式相减可证得结论;(3)用反证法证明,由(1),若,不妨设, ,则, ,这与已知Tp=Rp矛盾,从而,于是,则,依次可证明题设结论.
试题解析:(1)由(Sm+n+S1)2=4a2na2m,得(S2+S1)2=4a,即(a2+2a1)2=4a.
因为a1>0,a2>0,所以a2+2a1=a2,即=2. 3分
证明:(2)(方法一)令m=1,n=2,得(S3+S1)2=4a2a4,即(2a1+a2+a3)2=4a2a4,
令m=n=2,得S4+S1=2a4,即2a1+a2+a3=a4.
所以a4=4a2=8a1.
又因为=2,所以a3=4a1. 6分
由(Sm+n+S1)2=4a2na2m,得(Sn+1+S1)2=4a2na2,(Sn+2+S1)2=4a2na4.
两式相除,得=,所以==2.
即Sn+2+S1=2(Sn+1+S1),
从而Sn+3+S1=2(Sn+2+S1).
所以an+3=2an+2,故当n≥3时,{an}是公比为2的等比数列.
又因为a3=2a2=4a1,从而an=a1·2 n-1,n∈N*.
显然,an=a1·2 n-1满足题设,
因此{an}是首项为a1,公比为2的等比数列. 10分
(方法二)在(Sm+n+S1)2=4a2na2m中,
令m=n,得S2n+S1=2a2n. ①
令m=n+1,得S2n+1+S1=2, ②
在①中,用n+1代n得,S2n+2+S1=2a2n+2. ③
②-①,得a2n+1=2-2a2n=2(-), ④
③-②,得a2n+2=2a2n+2-2=2(-), ⑤
由④⑤得a2n+1=. ⑥ 8分
⑥代入④,得a2n+1=2a2n;⑥代入⑤得a2n+2=2a2n+1,
所以==2.又=2,
从而an=a1·2 n-1,n∈N*.
显然,an=a1·2 n-1满足题设,
因此{an}是首项为a1,公比为2的等比数列. 10分
(3)由(2)知,an=a1·2 n-1.
因为|cp|=|dp|=a1·2p-1,所以cp=dp或cp=-dp.
若cp=-dp,不妨设cp>0,dp<0,
则Tp≥a1·2p-1-(a1·2p-2+a1·2p-3+ +a1)=a1·2p-1-a1·(2p-1-1)=a1>0.
Rp≤-a1·2p-1+(a1·2p-2+a1·2p-3+ +a1)=-a1·2p-1+a1·(2p-1-1)=-a1<0.
这与Tp=Rp矛盾,所以cp=dp.
从而Tp-1=Rp-1.
由上证明,同理可得cp-1=dp-1.如此下去,可得cp-2=dp-2,cp-3=dp-3.,c1=d1.
即对任意正整数k(1≤k≤p),ck=dk. 16分
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P到两点(0,-),(0,)的距离之和等于4,设点P的轨迹为C.
(1)写出C的方程;
(2)设直线y=kx+1与C交于A、B两点,k为何值时?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司研究开发了一种新产品,生产这种新产品的年固定成本为150万元,每生产千件,需另投入成本为 (万元), .每件产品售价为500元.该新产品在市场上供不应求可全部卖完.
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)当年产量为多少千件时,该公司在这一新产品的生产中所获利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】空气质量主要受污染物排放量及大气扩散等因素的影响,某市环保监测站2014年10月连续10天(从左到右对应1号至10号)采集该市某地平均风速及空气中氧化物的日均浓度数据,制成散点图如图所示.
(Ⅰ)同学甲从这10天中随机抽取连续5天的一组数据,计算回归直线方程.试求连续5天的一组数据中恰好同时包含氧化物日均浓度最大与最小值的概率;
(Ⅱ)现有30名学生,每人任取5天数据,对应计算出30个不同的回归直线方程.已知30组数据中有包含氧化物日均浓度最值的有14组.现采用这30个回归方程对某一天平均风速下的氧化物日均浓度进行预测,若预测值与实测值差的绝对值小于2,则称之为“拟合效果好”,否则为“拟合效果不好”.根据以上信息完成下列2×2联表,并分析是否有95%以上的把握说拟合效果与选取数据是否包含氧化物日均浓度最值有关.
预测效果好 | 拟合效果不好 | 合计 | |
数据有包含最值 | 5 | ||
数据无包含最值 | 4 | ||
合计 |
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线的参数方程为为参数).
(1)直线过且与曲线相切,求直线的极坐标方程;
(2)点与点关于轴对称,求曲线上的点到点的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2).
(1)求φ的值;
(2)若f()=,-<α<0,求sin(2α-)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,真命题是( )
A.?x0∈R,
B.?x∈R,
C.“a>1,b>1”是“ab>1”的充要条件
D.设 , 为向量,则“|?|=||||”是“∥”的充要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com