科目:高中数学 来源: 题型:
π |
3 |
π |
3 |
2π |
3 |
x |
2 |
π |
4 |
π |
2 |
π |
6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
给定项数为的数列,其中.
若存在一个正整数,若数列中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列是“k阶可重复数列”,
例如数列
因为与按次序对应相等,所以数列是“4阶可重复数列”.
(Ⅰ)分别判断下列数列
① ②
是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若数为的数列一定是 “3阶可重复数列”,则的最小值是多少?说明理由;
(III)假设数列不是“5阶可重复数列”,若在其最后一项后再添加一项0或1,均可使新数列是“5阶可重复数列”,且,求数列的最后一项的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com