【题目】已知圆过两点, ,且圆心在直线上.
(1)求圆的标准方程;
(2)直线过点且与圆有两个不同的交点,若直线的斜率大于0,求的取值范围.
【答案】(I)(x﹣1)2+y2=25 (II)( ,+∞)
【解析】试题分析:(1)由,可得的垂直平分线方程,和已知直线方程
联立解得圆心坐标,再由求出半径,即可求得圆的标准方程;(2)设直线的方程为: 即,设到直线的距离为,由圆心到直线的距离小于半径列不等式,即可求得的取值范围.
试题解析:(I)MN的垂直平分线方程为:x﹣2y﹣1=0与2x﹣y﹣2=0联立解得圆心坐标为C(1,0)
R2=|CM|2=(﹣3﹣1)2+(3﹣0)2=25
∴圆C的标准方程为:(x﹣1)2+y2=25
(II)设直线的方程为:y﹣5=k(x+2)即kx﹣y+2k+5=0,设C到直线l的距离为d,
则d=
由题意:d<5
即:8k2﹣15k>0
∴k<0或k>
又因为k>0
∴k的取值范围是(,+∞)
科目:高中数学 来源: 题型:
【题目】在三棱柱ABOA′B′O′中,∠AOB=90°,侧棱OO′⊥面OAB,OA=OB=OO′=2.若C为线段O′A的中点,在线段BB′上求一点E,使|EC|最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=sin(x﹣30°)+cos(x﹣60°),g(x)=2sin2 .
(1)若α为第一象限角且f(α)= ,求g(α)之值;
(2)求f(x﹣1080°)≥g(x)在[0,360°]内的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(x﹣ )cos(x﹣ )(x∈R),则下面结论错误的是( )
A.函数f(x)的图象关于点(﹣ ,0)对称
B.函数f(x)的图象关于直线x=﹣ 对称
C.函数f(x)在区间[0, ]上是增函数
D.函数f(x)的图象是由函数y= sin2x的图象向右平移 个单位而得到
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心在直线x+3y﹣15=0上.
(1)求圆C的方程;
(2)设点P在圆C上,求△PAB的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且,
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com