精英家教网 > 高中数学 > 题目详情

【题目】椭圆 的两顶点为A,B如图,离心率为 ,过其焦点F(0,1)的直线l与椭圆交于C,D两点,并与x轴交于点P,直线AC与直线BD交于点Q.

(Ⅰ)当 时,求直线l的方程;
(Ⅱ)当点P异于A,B两点时,求证: 为定值.

【答案】解:(Ⅰ)由题意,设椭圆的标准方程为

由已知得: ,所以 ,椭圆的方程为

当直线l与x轴垂直时与题意不符,

设直线l的方程为y=kx+1,C1(x1,y1),D(x2,y2),

将直线l的方程代入椭圆的方程化简得(k2+2)x2+2kx﹣1=0,

,∴ = ,解得:

所以直线l的方程为

(Ⅱ)证明:当直线l与x轴垂直时与题意不符,

设直线l的方程为y=kx+1,(k≠0,k≠±1),C(x1,y1),D(x2,y2),∴P点的坐标为

由(Ⅰ)知

且直线AC的方程为 ,且直线BD的方程为

将两直线联立,消去y得

∵﹣1<x1,x2<1,∴ 异号,

=

与y1y2异号, 同号,

,解得,x=﹣k,

故Q点坐标为(﹣k,y0),

为定值


【解析】(Ⅰ)根据题意由两点间的距离公式可得,要求出C、D的坐标故可设直线方程与椭圆方程联立用韦达定理即可得到C、D橫坐标之间的关系再代入即可求解直线方程。(Ⅱ)先排除特殊情况再用向量法求解,即设出直线l的方程,联立椭圆方程用韦达定理表示出坐标之间的关系,再代入向量数量积公式即可得证。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定义域内有两个不同的极值点.
(Ⅰ)求a的取值范围;
(Ⅱ)设两个极值点分别为x1 , x2 , 证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ,(a>0)
(1)当a=2时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在区间[1,+∞)上单调递增,求a的取值范围;
(3)求函数f(x)在区间[1,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若

(1)求的值,并写出函数的最小正周期(不需证明);

(2)是否存在正整数,使得函数在区间内恰有个零点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,得到下面的数据表:

休闲方式
性别

看电视

看书

合计

20

100

120

20

20

40

合计

40

120

160

下面临界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段的休闲方式与性别有关系”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的奇函数,当时, .

1)求的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,ccosA+ csinA﹣b﹣a=0.
(Ⅰ)求C;
(Ⅱ)若c=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,且截轴所得的弦长为.

(1)求圆的方程;

(2)设圆轴正半轴的交点为,过分别作斜率为的两条直线交圆两点,且,试证明直线恒过一定点,并求出该定点坐标.

查看答案和解析>>

同步练习册答案