【题目】已知函数(为自然对数的底数).
(1)求的单调区间;
(2)是否存在正实数使得,若存在求出,否则说明理由;
(3)若存在不等实数,,使得,证明:.
【答案】(1)单调递减区间是,单调递增区间为.(2)不存在(3)详见解析
【解析】
试题分析:(1)先求导数,再求导函数符号确定单调区间:单调递减区间是,单调递增区间为.(2)构造函数,,确定其是否有零点即可,先求导,确定为上的增函数,因此,无零点(3)为研究方便不妨设,,则需证明,构造函数,可证在上单调增,即,因此,而在上递减,即
试题解析:解:(1)函数的单调递减区间是,单调递增区间为.
(2)不存在正实数使得成立,
事实上,由(1)知函数在上递增,
而当,有,在上递减,有,
因此,若存在正实数使得,必有.
令,
令,因为,所以,所以为上的增函数,所以,即,
故不存在正实数使得成立.
(3)若存在不等实数,,使得,则和中,必有一个在,另一个在,不妨设,.
①若,则,由(1)知:函数在上单调递减,所以;
②若,由(2)知:当,则有,
而,所以,即,
而,,由(1)知:函数在上单调递减,
∴,即有,
由(1)知:函数在上单调递减,所以;
综合①,②得:若存在不等实数,,使得,则总有.
科目:高中数学 来源: 题型:
【题目】在平面坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线的极坐标方程为.
(1)把曲线的方程化为普通方程,的方程化为直角坐标方程
(2)若曲线,相交于两点,的中点为,过点作曲线的垂线交曲线于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别为椭圆的左右顶点,设点为直线上不同于点的任意一点,若直线、分别与椭圆相交于异于、的点、.
(1)判断与以为直径的圆的位置关系(内、外、上)并证明.
(2)记直线与轴的交点为,在直线上,求点,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )
A. 6 B. 8 C. 12 D. 18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是矩形,平面,,,以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面;
(2)求直线与平面所成的角的大小;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于以下四个命题:①两条异面直线有无数条公垂线;②直线在平面内的射影是直线;③如果两条直线在同一个平面内的射影平行,那这两条直线平行;④过两条异面直线的一条有且仅有一个平面与已知直线平行;上述命题中为真命题的个数为( )个
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,为直角,,,与相交于点,,.
(1)试用、表示向量;
(2)在线段上取一点,在线段上取一点,使得直线过,设,,求的值;
(3)若,过作线段,使得为的中点,且,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com