精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形的两条对角线相交于点 边所在直线的方程为,点边所在的直线上.

(Ⅰ)求边所在直线的方程;

(Ⅱ)求矩形外接圆的方程.

【答案】(12

【解析】试题分析:(1)由已知中边所在直线方程为,且垂直,结合点在直线上,可得到边所在直线的点斜式方程,即可求得边所在直线的方程;(2)根据矩形的性质可得矩形外接圆圆心纪委两条直线的交点,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形外接圆的方程.

试题解析:(1)因为边所在直线方程为,垂直,

所以直线的斜率为,又因为在直线,

所以边所在直线的方程为,

2)由解得点的坐标为,

因为矩形两条对角线的交点为,

所以为距形外接圆的圆心, ,

从而距形外接圆的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知多面体中,四边形为平行四边形, 平面,且 .

(Ⅰ)求证:平面平面

(Ⅱ)若直线与平面所成的角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列方程中,没有实数根的是(  )
A.2x+3=0
B.﹣1=0
C.
D.+x+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为,第二次朝下面的数字为.表示一个基本事件.

请写出所有基本事件;

求满足条件“”为整数的事件的概率;

求满足条件“”的事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题错误的是 ( )

A. 如果平面平面,那么平面内一定存在直线平行于平面

B. 如果平面不垂直平面,那么平面内一定不存在直线垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面内所有直线都垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥S-ABCD中,底面ABCD为菱形,SD⊥平面ABCD,点ESD的中点.

(1)求证:直线SB∥平面ACE

(2)求证:直线AC⊥平面SBD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与圆交于MN两点,且MN关于直线对称.

(1)求mk的值;

(2)若直线与圆CPQ两点,是否存在实数a使得OPOQ,如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):

①甲地:5个数据的中位数为24,众数为22;

②乙地:5个数据的中位数为27,总体均值为24;

③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;

则肯定进入夏季的地区的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

已知平面直角坐标系,以为极点, 轴的非负半轴为极轴建立极坐标系,曲线的参数方程为为参数). 是曲线上两点,点的极坐标分别为.

1)写出曲线的普通方程和极坐标方程;

2)求的值.

查看答案和解析>>

同步练习册答案