【题目】如图,在三棱锥中,平面平面,为棱上的一点,且,为棱的中点,为棱上的一点,若平面,是边长为4的正三角形,,.
(1)求证:平面平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)要证平面平面转证平面,结合条件面面垂直可证;
(2)先证明平面以为坐标原点,,,所在直线分别为轴,轴,轴,建立空间直角坐标系,利用空间向量法即可求出直线与平面所成角的正弦值.
(1)取的中点,连结,
因为,所以,
因为平面,平面,
平面平面,所以,
又因为,所以,
所以为的中点,又因为为的中点,
所以,所以,
因为平面平面,平面平面,
平面,所以平面,
因为平面,所以平面平面.
(2)由(1)可知,
在中,由余弦定理得,所以,
所以,所以,
因为平面平面,平面平面,
所以平面.
以为坐标原点,,,所在直线分别为轴,轴,轴,建立空间直角坐标系,则,,,
所以,,
设平面的法向量为,
由得,取,则,,所以.
又,,,
设直线平面所成角为.
则 ,
所以直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①函数的最大值为1;
②已知集合,则集合A的真子集个数为3;
③若为锐角三角形,则有;
④“”是“函数在区间内单调递增”的充分必要条件.
其中正确的命题是______.(填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1.
(1)求椭圆C的方程;
(2)设点M为椭圆上第一象限内一动点,A,B分别为椭圆的左顶点和下顶点,直线MB与x轴交于点C,直线MA与y轴交于点D,求证:四边形ABCD的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】试问:能否把2008表示成的形式?如果可以,这种表示方式是否有无限多个?其中,m、n均为大于100且小于170的正整数,且;均为两两不相等的小于6的正有理数,且均为大于1且小于5的正整数,同时, 两两不相等,也两两不相等请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x,g(x)=2x+a,若x1∈[,1],x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是( )
A.a≤1B.a≥1C.a≤2D.a≥2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3,
(1)求抛物线E的方程;
(2)已知点G(﹣1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度,某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如表:
得分 | |||||||
男性 人数 | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性 人数 | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)从该社区随机抽取一名居民参与问卷测试,试估计其得分不低于60分的概率;
(2)将居民对垃圾分类的了解程度分为“比较了解”(得分不低于60分)和“不太了解”(得分低于60分)两类,完成2×2列联表,并判断是否有95%的把握认为“居民对垃圾分类的了解程度”与“性别”有关?
不太了解 | 比较了解 | 合计 | |
男性 | |||
女性 | |||
合计 |
(3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,现从这10人中随机抽取3人作为环保宣传队长,设3人中男性队长的人数为ξ,求ξ的分布列和期望.
附:,(n=a+b+c+d).
临界值表:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com