精英家教网 > 高中数学 > 题目详情

【题目】20168月巴西里约热内卢举办的第31届奥运会上,乒乓球比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲、乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率如下表:

出场顺序

1

2

3

4

5

获胜概率

若甲队横扫对手获胜(即30获胜)的概率是,比赛至少打满4场的概率为.

1)求的值;

2)求甲队获胜场数的分布列和数学期望.

【答案】1;(2)分布列见解析;

【解析】

1)利用甲队横扫对手获胜(即获胜)的概率是,比赛至少打满4场的概率为,建立方程组,即可求的值;

2)求得甲队获胜场数的可能取值,求出相应的概率,可得分布列和数学期望.

解:(1)由题意

解得

2)设甲队获胜场数为,则的可取的值为0123

的分布列为

0

1

2

3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有10件产品中有3件次品,7件正品,从中抽取5用数字表示

1)没有次品的抽法有多少种?

2)有2件次品的抽法有多少种?

3)至少1件次品的抽法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求直线的普通方程和曲线的直角坐标方程;

2)若射线)与直线和曲线分别交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱中的底面为等腰直角三角形,,点分别是边上动点,若直线平面,点为线段的中点,则点的轨迹为  

A. 双曲线的一支一部分 B. 圆弧一部分

C. 线段去掉一个端点 D. 抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2012年12月18日,作为全国首批开展空气质量新标准监测的74个城市之一,郑州市正式发布数据.资料表明近几年来郑州市雾霾治理取得了很大成效空气质量与前几年相比得到了很大改善.郑州市设有9个监测站点监测空气质量指数(),其中在轻度污染区、中度污染区、重度污染区分别设有2,5,2个监测站点,以9个站点测得的的平均值为依据播报我市的空气质量.

(Ⅰ)若某日播报的为118,已知轻度污染区的平均值为74,中度污染区的平均值为114,求重度污染区的平均值

(Ⅱ)如图是2018年11月的30天中的分布,11月份仅有一天.

组数

分组

天数

第一组

3

第二组

4

第三组

4

第四组

6

第五组

5

第六组

4

第七组

3

第八组

1

①郑州市某中学利用每周日的时间进行社会实践活动,以公布的为标准如果小于180,则去进行社会实践活动.以统计数据中的频率为概率,求该校周日进行社会实践活动的概率;

②在“创建文明城市”活动中,验收小组把郑州市的空气质量作为一个评价指标,从当月的空气质量监测数据中抽取3天的数据进行评价,设抽取到不小于180的天数为的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的,男生追星的人数占男生人数的,女生追星的人数占女生人数的.若有的把握认为是否追星和性别有关,则男生至少有( )

参考数据及公式如下:

A. 12B. 11C. 10D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的单调性;

时,若关于x的不等式恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:

(1)人都射中目标的概率; (2)人中恰有人射中目标的概率;

(3)人至少有人射中目标的概率; (4)人至多有人射中目标的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子内有3个不同的黑球,5个不同的白球.

1)从中取出3个黑球、4个白球排成一列且4个白球两两不相邻的排法有多少种?

2)从中任取6个球且白球的个数不比黑球个数少的取法有多少种?

查看答案和解析>>

同步练习册答案