【题目】已知函数与的图象关于点对称.
(1)求函数的解析式;
(2)若函数有两个不同零点,求实数的取值范围;
(3)若函数在上是单调减函数,求实数的取值范围.
【答案】(1);(2);(3).
【解析】
(1)由题意可得出,进而可求得函数的解析式;
(2)令,得,则问题等价于直线与函数的图象有两个交点,作出函数与直线的图象,利用数形结合思想可求得实数的取值范围;
(3)任取、且,可得出,进而得出,求出的取值范围,由此可解得实数的取值范围.
(1)在函数的图象上任取一点,
则该点关于点的对称点在函数的图象上,
所以,,;
(2)令,得,
则问题等价于直线与函数的图象有两个交点,
,
由双勾函数的单调性可知,函数的单调递增区间为和,单调递减区间为和,
函数的单调递增区间为和,单调递减区间为和,
作出函数与直线的图象如下图所示:
由图象可知,当或时,直线与函数的图象有两个交点,
因此,实数的取值范围是;
(3)由(1)知,,
任取、且,即,
则,
,则,,
所以,
,,则,,即,
,解得.
因此,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知△ABC的两个顶点A,B的坐标分别为(,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=2,动点C的轨迹为曲线G.
(1)求曲线G的方程;
(2)设直线l与曲线G交于M,N两点,点D在曲线G上,是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:极坐标与参数方程]
在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)若射线 与曲线交于,两点,与曲线交于,两点,求取最大值时的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上、下顶点分别为和,且其离心率为.
(1)求椭圆的标准方程;
(2)点是直线上的一个动点,直线分别交椭圆于两点(四点互不重合),请判断直线是否恒过定点.若过定点,求出定点的坐标;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列{an}中,a1=3,且对任意的正整数n,都有an+1=λan+2×3n,其中常数λ>0.
(1)设bn.当λ=3时,求数列{bn}的通项公式;
(2)若λ≠1且λ≠3,设cn=an,证明:数列{cn}为等比数列;
(3)当λ=4时,对任意的n∈N*,都有an≥M,求实数M的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com