精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为菱形,平面底面,且的中点.

1)证明:.

2)求三棱锥的体积.

【答案】(1)见解析(2)

【解析】

1)要证,由于底面菱形中对角线,因此可取中点,从而有,即,于是只要证,即可得平面,从而得证线线垂直,这可由面面垂直的性质得平面,从而得

2)换底,即,由(1是棱锥的高,底面的面积是面积的一半,是菱形面积的四分之一,再由体积公式可得.

1)证明:取的中点,连接.

因为的中点,所以.

因为平面平面,平面平面

所以平面.

因为平面,所以.

因为底面为菱形,所以.

因为的中点,的中点,所以,所以.

因为,所以平面.

因为平面,所以.

2)解:由(1)可知四棱锥的高为.

因为,所以.

因为底面为菱形,

所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足是数列的前项的和.

(1)求数列的通项公式

(2)若成等差数列,18,成等比数列求正整数的值

(3)是否存在使得为数列中的项若存在求出所有满足条件的的值若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经销某商品,顾客可以采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是,经销件该产品,若顾客采用一次性付款,商场获得利润元;若顾客采用分期付款,商场获得利润元.

(Ⅰ)求位购买商品的顾客中至少有位采用一次性付款的概率.

(Ⅱ)若位顾客每人购买件该商品求商场获得利润不超过元的概率.

(Ⅲ)若位顾客每人购买件该商品,设商场获得的利润为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.

(Ⅰ)求圆的标准方程;

(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线恰好平行?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,已知,若点是线段上一点(不含端点),过

(1)若外接圆的直径长为,求的值;

(2)求的最小值

(3)问点在何处时,的面积最大?最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以x轴正半轴为始边作锐角α,其终边与单位圆交于点A.以OA为始边作锐角β,其终边与单位圆交于点B,AB=
(1)求cosβ的值;
(2)若点A的横坐标为 ,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线在点处的切线为 轴的交点坐标为,求的值;

2)讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.

(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;

(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:为圆柱的底面枳,为圆柱的高)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.“sinα= ”是“cos2α= ”的必要不充分条件
B.已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有 ,则p∧(¬q)是真命题
C.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”
D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分成抽样

查看答案和解析>>

同步练习册答案