【题目】在多面体ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F为AB的中点.
(1)求证:EF∥平面ACD;
(2)若EA=EB=CD,求二面角B﹣AD﹣E的正切值的大小.
【答案】
(1)证明:取AC中点G,连接DG,FG.
因为F是AB的中点,所以FG是△ABC的中位线,
则FG∥BC,FG= ,
所以FG∥DE,FG=DE,
则四边形DEFG是平行四边形,
所以EF∥DG,故EF∥平面ACD.
(2)解:过点B作BM垂直DE的延长线于点M,
因为AE⊥平面BCDE,所以AE⊥BM,则BM⊥平面ADE,
过M作MH⊥AD,垂足为H,连接BH,则AD⊥平面BMH,
所以AD⊥BH,则∠BHM是二面角B﹣AD﹣E的平面角.
设DE=a,则BC=AB=2a,
在△BEM中,EM= ,BE= ,所以BM= .
又因为△ADE∽△MDH,
所以HM= ,则tan∠BHM= .
【解析】(1)取AC中点G,连接DG,FG,由已知得四边形DEFG是平行四边形,由此能证明EF∥平面ACD.(2)过点B作BM垂直DE的延长线于点M,过M作MH⊥AD,垂足为H,连接BH,则∠BHM是二面角B﹣AD﹣E的平面角,由此能求出二面角B﹣AD﹣E的正切值的大小.
【考点精析】通过灵活运用直线与平面平行的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +bx(其中a,b为常数)的图象经过(1,3)、(2,3)两点.
(I)求a,b的值,判断并证明函数f(x)的奇偶性;
(II)证明:函数f(x)在区间[ ,+∞)上单调递增.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2分别是C: + =1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 (a>0,b>0)的离心率为 ,虚轴长为4.
(1)求双曲线的标准方程;
(2)过点(0,1),倾斜角为45°的直线l与双曲线C相交于A、B两点,O为坐标原点,求△OAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“ ≥2”的充分必要条件
C.命题“若x2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2﹣3x+2≠0”
D.命题p:?x∈R,使得x2+x﹣1<0,则¬p:?x∈R,使得x2+x﹣1≥0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集为R,集合A={x|y=lgx+ },B={x| <2x﹣a≤8}.
(1)当a=0时,求(RA)∩B;
(2)若A∪B=B,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对实数a和b,定义运算“”:ab= ,设函数f(x)=(x2﹣2)(x﹣x2),x∈R,若函数y=f(x)+c的图象与x轴恰有两个公共点,则实数c的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com