【题目】如图,椭圆M: =1(a>b>0)的离心率为 ,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求 的最大值及取得最大值时m的值.
【答案】解:(I) …①
矩形ABCD面积为8,即2a2b=8…②
由①②解得:a=2,b=1,
∴椭圆M的标准方程是 .
(II) ,
由△=64m2﹣20(4m2﹣4)>0得 .
设P(x1 , y1),Q(x2 , y2),则 ,
.
当l过A点时,m=1,当l过C点时,m=﹣1.
①当 时,有 , ,
其中t=m+3,由此知当 ,即 时, 取得最大值 .
②由对称性,可知若 ,则当 时, 取得最大值 .
③当﹣1≤m≤1时, , ,
由此知,当m=0时, 取得最大值 .
综上可知,当 或m=0时, 取得最大值
【解析】(Ⅰ)通过椭圆的离心率,矩形的面积公式,直接求出a,b,然后求椭圆M的标准方程;(Ⅱ) 通过
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知, 分别为等差数列和等比数列, , 的前项和为.函数的导函数是,有,且是函数的零点.
(1)求的值;
(2)若数列公差为,且点,当时所有点都在指数函数的图象上.
请你求出解析式,并证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在测试中,客观题难题的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):
(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;
(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(3)定义统计量,其中为第题的实测难度, 为第题的预估难度().规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知曲线,曲线, 是平面上一点,若存在过点的直线与都有公共点,则称为“型点”.
(1)证明: 的左焦点是“型点”;
(2)设直线与有公共点,求证: ,进而证明原点不是“型点”;
(3)求证: 内的点都不是“型点”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,双曲线C: =1(a>0,b>0)的左焦点为F(﹣c,0)(c>0),以OF为直径的圆交双曲线C的渐近线于A,B,O三点,且( + ) =0,若关于x的方程ax2+bx﹣c=0的两个实数根分别为x1和x2 , 则以|x1|,|x2|,2为边长的三角形的形状是( )
A.钝角三角形
B.直角三角形
C.锐角三角形
D.等腰直角三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com