精英家教网 > 高中数学 > 题目详情
已知椭圆(a>b>0)的一个顶点为B(0,4),离心率e=,直线l交椭圆于M、N两点.
(1)若直线l的方程为y=x-4,求弦MN的长;
(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.
【答案】分析:(1)由已知中椭圆(a>b>0)的一个顶点为B(0,4),离心率e=,根据e=,b=4,a2=b2+c2可求出椭圆的标准方程,进而求直线l的方程及弦长公式,得到弦MN的长;
(2)设线段MN的中点为Q(x,y),结合(1)中结论,及△BMN的重心恰好为椭圆的右焦点F,由重心坐标公式,可得Q点坐标,由中点公式及M,N也在椭圆上,求出MN的斜率,可得直线l方程.
解答:解:(1)由已知椭圆(a>b>0)的一个顶点为B(0,4),
∴b=4,
又∵离心率e=

,解得a2=20,
∴椭圆方程为; …(3分)
由4x2+5y2=80与y=x-4联立,
消去y得9x2-40x=0,
∴x1=0,
∴所求弦长;            …(6分)
(2)椭圆右焦点F的坐标为(2,0),
设线段MN的中点为Q(x,y),
由三角形重心的性质知,又B(0,4),
∴(2.-4)=2(x-2,y),
故得x=3,y=-2,
求得Q的坐标为(3,-2);                               …(9分)
设M(x1,y1),N(x2,y2),则x1+x2=6,y1+y2=-4,
,…(11分)
以上两式相减得

故直线MN的方程为,即6x-5y-28=0.   …(13分)
点评:本题考查的知识点是直线的一般方程,直线与圆锥曲线,熟练掌握椭圆的简单性质是重心坐标,中点公式等基本公式,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆=1(a>b>0)与双曲线=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中数学 来源:2014届广东省、阳东一中高二上联考文数试卷(解析版) 题型:解答题

(本题满分14分)

如图,已知椭圆=1(ab>0),F1F2分别为椭圆的左、右焦点,A为椭圆的上的顶点,直线AF2交椭圆于另 一点B.

(1)若∠F1AB=90°,求椭圆的离心率;

(2)若=2·,求椭圆的方程.

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(天津卷解析版) 题型:解答题

已知椭圆(a>b>0),点在椭圆上。

(I)求椭圆的离心率。

(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。

【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:解答题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.

   (1)求椭圆C的标准方程;

   (2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年河北省邯郸市高二上学期期末考试数学理卷 题型:解答题

(本小题满分分)

(普通高中)已知椭圆(a>b>0)的离心率,焦距是函数的零点.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,,求k的值.

 

查看答案和解析>>

同步练习册答案