精英家教网 > 高中数学 > 题目详情
(2012•济南二模)已知向量
m
=(2cosωx,-1),
n
=(sinωx-cosωx,2),函数f(x)=
m
n
+3的周期为π.
(Ⅰ) 求正数ω;
(Ⅱ) 若函数f(x)的图象向左平移
π
8
,再横坐标不变,纵坐标伸长到原来的
2
倍,得到函数g(x)的图象,求函数g(x)的单调增区间.
分析:(Ⅰ)利用三角函数的恒等变换化简f(x)的解析式为
2
sin(2ωx-
π
4
)
,根据周期求出ω的值.
(Ⅱ) 由(Ⅰ)知:f(x)=
2
sin(2x-
π
4
)
,再根据y=Asin(ωx+∅)的图象变换规律可得 g(x)=
2
2
sin[2(x+
π
8
)-
π
4
]
=2sin2x,由2kπ-
π
2
≤2x≤2kπ+
π
2
,k∈Z,求得x的范围,即可得到函数g(x)的单调增区间.
解答:解:(Ⅰ)f(x)=
m
n
+3=(2cosωx,-1)•(sinωx-cosωx,2)+3  …(1分)
=2cosωx(sinωx-cosωx)+1  …(2分)
=2sinωxcosωx-2cos2ωx+1  …(3分)
=sin2ωx-cos2ωx  …(4分)
=
2
sin(2ωx-
π
4
)
. …(5分)
∵T=π,且ω>0,∴ω=1.…(6分)
(Ⅱ) 由(Ⅰ)知:f(x)=
2
sin(2x-
π
4
)
,…(7分)
y=Asin(ωx+∅)的图象变换规律可得 g(x)=
2
2
sin[2(x+
π
8
)-
π
4
]
=2sin2x. …(9分)
由2kπ-
π
2
≤2x≤2kπ+
π
2
,k∈Z;…(10分)
解得kπ-
π
4
≤x≤kπ+
π
4
,k∈Z;…(11分)
∴函数g(x)的单调增区间为[kπ-
π
4
,kπ+
π
4
]
,k∈Z.…(12分)
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调增区间,y=Asin(ωx+∅)的图象变换规律,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•济南二模)函数y=sinxsin(
π
2
+x)
的最小正周期是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)若a>b>0,则下列不等式不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)在等差数列{an}中,a1=-2012,其前n项和为Sn,若
S12
12
-
S10
10
=2,则S2012的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)如图,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
12
AP=2,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.

(1)求证:平面PCD⊥平面PAD;
(2)求二面角G-EF-D的大小;
(3)求三棱椎D-PAB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•济南二模)函数y=lg
1
|x+1|
|的大致图象为(  )

查看答案和解析>>

同步练习册答案