7£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÓÒ½¹µãµ½ÓÒ×¼ÏߵľàÀëΪ$\frac{\sqrt{3}}{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì
£¨2£©Èçͼ£¬µãM£¬NΪÍÖÔ²ÉÏÏàÒìµÄÁ½µã£¬ÆäÖеãMÔÚµÚÒ»ÏóÏÞ£¬ÇÒÖ±ÏßAMÓëÖ±ÏßBNµÄбÂÊ»¥ÎªÏà·´Êý£®
¢ÙÖ¤Ã÷£ºÖ±ÏßMNµÄбÂÊΪ³£Êý
¢ÚÇóËıßÐÎAMBNÃæ»ýSµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©Í¨¹ýÍÖÔ²ÓÒ½¹µãµ½ÓÒ×¼ÏߵľàÀëΪ$\frac{\sqrt{3}}{3}$¿ÉÖª$\frac{{a}^{2}}{c}$-c=$\frac{\sqrt{3}}{3}$£¬²¢Óëe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$ÁªÁ¢¿ÉÇó³öa=2¡¢c=$\sqrt{3}$£¬½ø¶ø¿ÉµÃÍÖÔ²·½³Ì£»
£¨2£©Í¨¹ý£¨1£©¿ÉÖªA£¨2£¬0£©¡¢B£¨0£¬1£©£¬Ö±ÏßÖ±ÏßBN£¬AMµÄбÂʾù´æÔÚÇÒ²»Îª0£®¢Ùͨ¹ýÉèÖ±ÏßAMµÄ·½³ÌΪx=my+2£¬ÔòÖ±ÏßBNµÄ·½³ÌΪx=-my+m£¬²¢·Ö±ðÓëÍÖÔ²·½³ÌÁªÁ¢£¬¼ÆËã¿ÉÇó³öM£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©¡¢N£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬½ø¶ø¼ÆËã¼´µÃ½áÂÛ£»¢Úͨ¹ýÍÖÔ²·½³Ì¿ÉÖªÖ±ÏßABµÄ·½³ÌΪx+2y-2=0£¬½ø¶øÀûÓÃÁ½µã¼ä¾àÀ빫ʽ¿ÉÇó³ö|AB|=$\sqrt{5}$£¬Í¨¹ýM¡¢NÁ½µã×ø±ê¿ÉÇó³öµãMµ½Ö±ÏßABµÄ¾àÀëdM¡¢µãNµ½Ö±ÏßABµÄ¾àÀëdN£¬ÀûÓÃS=$\frac{1}{2}$|AB|£¨dM+dN£©¼ÆËã¡¢»¯¼ò¿ÉÖªS=-2•$\frac{{m}^{2}+4m-4}{4+{m}^{2}}$£¬Í¨¹ý¼Çf£¨x£©=-2•$\frac{{x}^{2}+4x-4}{4+{x}^{2}}$£¬²¢Ç󵼿ÉÖªf£¨x£©ÔÚÇø¼ä£¨-2£¬$2-2\sqrt{2}$£©Éϵ¥µ÷µÝÔö¡¢ÔÚ£¨$2-2\sqrt{2}$£¬0£©Éϵ¥µ÷µÝ¼õ£¬¼ÆËã¼´µÃ½áÂÛ£®

½â´ð £¨1£©½â£º¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$£¬
¡àÆäÓÒ×¼Ïß·½³ÌΪ£ºx=$\frac{{a}^{2}}{c}$£¬
¡ßÓÒ½¹µãµ½ÓÒ×¼ÏߵľàÀëΪ$\frac{\sqrt{3}}{3}$£¬
¡à$\frac{{a}^{2}}{c}$-c=$\frac{\sqrt{3}}{3}$£¬
ÓÖ¡ße=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡àa=2£¬c=$\sqrt{3}$£¬
¡àa2=4£¬b2=a2-c2=4-3=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬A£¨2£¬0£©£¬B£¨0£¬1£©£¬Ö±ÏßÖ±ÏßBN£¬AMµÄбÂʾù´æÔÚÇÒ²»Îª0£®
¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAMµÄ·½³ÌΪ£ºx=my+2£¬ÔòÖ±ÏßBNµÄ·½³ÌΪ£ºx=-my+m£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=my+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xÕûÀíµÃ£º£¨4+m2£©y2+4my=0£¬
¡àM£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=-my+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xÕûÀíµÃ£º£¨4+m2£©y2-2m2y+m2-4=0£¬
¡àN£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬
¡àÖ±ÏßlµÄбÂÊΪ$\frac{\frac{{m}^{2}-4}{4+{m}^{2}}+\frac{4m}{4+{m}^{2}}}{\frac{8m}{4+{m}^{2}}-\frac{8-2{m}^{2}}{4+{m}^{2}}}$=$\frac{{m}^{2}+4m-4}{2{m}^{2}+8m-8}$=$\frac{1}{2}$£»
¢Ú½â£ºÓÉ£¨1£©¿ÉÖªÖ±ÏßABµÄ·½³ÌΪ£ºx+2y-2=0£¬|AB|=$\sqrt{£¨2-0£©^{2}+£¨0-1£©^{2}}$=$\sqrt{5}$£¬
ÓÉ¢Ù¿ÉÖª£ºM£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©£¬N£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬
¡ßµãMÔÚµÚÒ»ÏóÏÞ£¬
¡à$\frac{1}{m}$£¼-$\frac{1}{2}$£¬¼´-2£¼m£¼0£¬
¡àµãMµ½Ö±ÏßABµÄ¾àÀëdM=$\frac{|\frac{8-2{m}^{2}}{4+{m}^{2}}-2•\frac{4m}{4+{m}^{2}}-2|}{\sqrt{1+4}}$=-$\frac{4{m}^{2}+8m}{\sqrt{5}£¨4+{m}^{2}£©}$£¬
µãNµ½Ö±ÏßABµÄ¾àÀëdN=$\frac{|\frac{8m}{4+{m}^{2}}+2•\frac{{m}^{2}-4}{4+{m}^{2}}-2|}{\sqrt{1+4}}$=$\frac{16-8m}{\sqrt{5}£¨4+{m}^{2}£©}$£¬
¡àS=$\frac{1}{2}$|AB|£¨dM+dN£©=$\frac{\sqrt{5}}{2}$•[$\frac{16-8m}{\sqrt{5}£¨4+{m}^{2}£©}$-$\frac{4{m}^{2}+8m}{\sqrt{5}£¨4+{m}^{2}£©}$]
=-2•$\frac{{m}^{2}+4m-4}{4+{m}^{2}}$£¬
¼Çf£¨x£©=-2•$\frac{{x}^{2}+4x-4}{4+{x}^{2}}$£¬ÔòÁîf¡ä£¨x£©=$\frac{8£¨{x}^{2}-4x-4£©}{£¨4+{x}^{2}£©^{2}}$=0£¬
¼´x2-4x-4=0£¬½âµÃ£ºx=$2-2\sqrt{2}$»ò$2+2\sqrt{2}$£¨Éᣩ£¬
¡àf£¨x£©ÔÚÇø¼ä£¨-2£¬$2-2\sqrt{2}$£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨$2-2\sqrt{2}$£¬0£©Éϵ¥µ÷µÝ¼õ£¬
ÓÖ¡ßf£¨$2-2\sqrt{2}$£©=-2•$\frac{£¨2-2\sqrt{2}£©^{2}+4£¨2-2\sqrt{2}£©-4}{4+£¨2-2\sqrt{2}£©^{2}}$=$2\sqrt{2}$£¬
f£¨-2£©=-2•$\frac{£¨-2£©^{2}+4•£¨-2£©-4}{4+£¨-2£©^{2}}$=2£¬f£¨0£©=-2•$\frac{0+0-4}{4}$=2£¬
¡àËıßÐÎAMBNÃæ»ýSµÄÈ¡Öµ·¶Î§ÊÇ£º£¨2£¬$2\sqrt{2}$]£®

µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªsin¦Á+cos¦Á=$\frac{1}{5}$£¬0£¼¦Á£¼¦Ð£¬ÇóÏÂÁи÷ʽµÄÖµ£º
£¨1£©tan¦Á£»
£¨2£©sin2¦Á-2sin ¦Ácos¦Á+3cos2¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÈôÖ±Ïßy=2aÓ뺯Êýf£¨x£©=|x-a|-1µÄͼÏóÖ»ÓÐÒ»¸ö½»µã£¬ÔòʵÊýaµÄÖµÊÇ$-\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÃüÌâ¡°?x£¾1£¬x2£¾1¡±µÄ·ñ¶¨ÊÇ?x£¾1£¬x2¡Ü1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÅ×ÎïÏßy2=4xÉÏÒ»µãPÔÚyÖáÉϵÄÉäӰΪN£¬¶¯µãMÔÚÖ±Ïßy=x+2ÉÏ£¬ÔòPM+PNµÄ×îСֵΪ$\frac{3\sqrt{2}-2}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Æû³µµÄ¡°È¼ÓÍЧÂÊ¡±ÊÇÖ¸Æû³µÃ¿ÏûºÄ1ÉýÆûÓÍÐÐÊ»µÄÀï³Ì£¬ÈçͼÃèÊöÁ˼ס¢ÒÒ¡¢±ûÈýÁ½Æû³µÔÚ²»Í¬ËÙ¶ÈϵÄȼÓÍЧÂÊÇé¿ö£®Ä³³ÇÊлú¶¯³µ×î¸ßÏÞËÙ80ǧÃ×/Сʱ£¬ÏàͬÌõ¼þÏ£¬Óüס¢ÒÒ¡¢±ûÈýÁ½Æû³µÔÚ¸ÃÊÐÐÐÊ»£¬×îÊ¡ÓÍÊÇ£¨¡¡¡¡£©
A£®¼×³µB£®ÒÒ³µC£®±û³µD£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®É躯Êýf£¨x£©=x|x|+bx+c£¬¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢Ùµ±x£¾0ʱ£¬f£¨x£©ÊÇÔöº¯Êý£»
¢Úf£¨x£©µÄͼÏó¹ØÓÚ£¨0£¬c£©¶Ô³Æ£»
¢Ûµ±b¡Ù0ʱ£¬·½³Ìf£¨x£©=0±ØÓÐÈý¸öʵÊý¸ù£»
¢Üµ±b=0ʱ£¬·½³Ìf£¨x£©=0ÓÐÇÒÖ»ÓÐÒ»¸öʵ¸ù£®
ÆäÖÐÕýÈ·µÄÃüÌâÊǢڢܣ¨ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬SnΪÆäÇ°nÏîºÍ£¬¶ÔÓÚÈÎÒân¡ÊN*£¬×ÜÓÐan£¬Sn£¬an2³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{bn}ÖУ¬bn=a1•a2•a3•¡­•an£¬ÊýÁÐ{$\frac{1}{{b}_{n}}$}µÄÇ°nÏîºÍΪTn£¬ÇóÖ¤£ºTn£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôaºÍb¾ùΪ·ÇÁãʵÊý£¬ÔòÏÂÁв»µÈʽÖкã³ÉÁ¢µÄÊÇ £¨¡¡¡¡£©
A£®$\frac{{{a^2}+{b^2}}}{2}¡Ý{£¨\frac{a+b}{2}£©^2}$B£®$\frac{b}{a}+\frac{a}{b}¡Ý2$C£®$£¨a+b£©£¨\frac{1}{a}+\frac{1}{b}£©¡Ý4$D£®$\frac{|a+b|}{2}¡Ý\sqrt{\;|ab|}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸