·ÖÎö £¨1£©Í¨¹ýÍÖÔ²ÓÒ½¹µãµ½ÓÒ×¼ÏߵľàÀëΪ$\frac{\sqrt{3}}{3}$¿ÉÖª$\frac{{a}^{2}}{c}$-c=$\frac{\sqrt{3}}{3}$£¬²¢Óëe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$ÁªÁ¢¿ÉÇó³öa=2¡¢c=$\sqrt{3}$£¬½ø¶ø¿ÉµÃÍÖÔ²·½³Ì£»
£¨2£©Í¨¹ý£¨1£©¿ÉÖªA£¨2£¬0£©¡¢B£¨0£¬1£©£¬Ö±ÏßÖ±ÏßBN£¬AMµÄбÂʾù´æÔÚÇÒ²»Îª0£®¢Ùͨ¹ýÉèÖ±ÏßAMµÄ·½³ÌΪx=my+2£¬ÔòÖ±ÏßBNµÄ·½³ÌΪx=-my+m£¬²¢·Ö±ðÓëÍÖÔ²·½³ÌÁªÁ¢£¬¼ÆËã¿ÉÇó³öM£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©¡¢N£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬½ø¶ø¼ÆËã¼´µÃ½áÂÛ£»¢Úͨ¹ýÍÖÔ²·½³Ì¿ÉÖªÖ±ÏßABµÄ·½³ÌΪx+2y-2=0£¬½ø¶øÀûÓÃÁ½µã¼ä¾àÀ빫ʽ¿ÉÇó³ö|AB|=$\sqrt{5}$£¬Í¨¹ýM¡¢NÁ½µã×ø±ê¿ÉÇó³öµãMµ½Ö±ÏßABµÄ¾àÀëdM¡¢µãNµ½Ö±ÏßABµÄ¾àÀëdN£¬ÀûÓÃS=$\frac{1}{2}$|AB|£¨dM+dN£©¼ÆËã¡¢»¯¼ò¿ÉÖªS=-2•$\frac{{m}^{2}+4m-4}{4+{m}^{2}}$£¬Í¨¹ý¼Çf£¨x£©=-2•$\frac{{x}^{2}+4x-4}{4+{x}^{2}}$£¬²¢Ç󵼿ÉÖªf£¨x£©ÔÚÇø¼ä£¨-2£¬$2-2\sqrt{2}$£©Éϵ¥µ÷µÝÔö¡¢ÔÚ£¨$2-2\sqrt{2}$£¬0£©Éϵ¥µ÷µÝ¼õ£¬¼ÆËã¼´µÃ½áÂÛ£®
½â´ð £¨1£©½â£º¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$£¬
¡àÆäÓÒ×¼Ïß·½³ÌΪ£ºx=$\frac{{a}^{2}}{c}$£¬
¡ßÓÒ½¹µãµ½ÓÒ×¼ÏߵľàÀëΪ$\frac{\sqrt{3}}{3}$£¬
¡à$\frac{{a}^{2}}{c}$-c=$\frac{\sqrt{3}}{3}$£¬
ÓÖ¡ße=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
¡àa=2£¬c=$\sqrt{3}$£¬
¡àa2=4£¬b2=a2-c2=4-3=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬A£¨2£¬0£©£¬B£¨0£¬1£©£¬Ö±ÏßÖ±ÏßBN£¬AMµÄбÂʾù´æÔÚÇÒ²»Îª0£®
¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAMµÄ·½³ÌΪ£ºx=my+2£¬ÔòÖ±ÏßBNµÄ·½³ÌΪ£ºx=-my+m£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=my+2}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xÕûÀíµÃ£º£¨4+m2£©y2+4my=0£¬
¡àM£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{x=-my+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥xÕûÀíµÃ£º£¨4+m2£©y2-2m2y+m2-4=0£¬
¡àN£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬
¡àÖ±ÏßlµÄбÂÊΪ$\frac{\frac{{m}^{2}-4}{4+{m}^{2}}+\frac{4m}{4+{m}^{2}}}{\frac{8m}{4+{m}^{2}}-\frac{8-2{m}^{2}}{4+{m}^{2}}}$=$\frac{{m}^{2}+4m-4}{2{m}^{2}+8m-8}$=$\frac{1}{2}$£»
¢Ú½â£ºÓÉ£¨1£©¿ÉÖªÖ±ÏßABµÄ·½³ÌΪ£ºx+2y-2=0£¬|AB|=$\sqrt{£¨2-0£©^{2}+£¨0-1£©^{2}}$=$\sqrt{5}$£¬
ÓÉ¢Ù¿ÉÖª£ºM£¨$\frac{8-2{m}^{2}}{4+{m}^{2}}$£¬-$\frac{4m}{4+{m}^{2}}$£©£¬N£¨$\frac{8m}{4+{m}^{2}}$£¬$\frac{{m}^{2}-4}{4+{m}^{2}}$£©£¬
¡ßµãMÔÚµÚÒ»ÏóÏÞ£¬
¡à$\frac{1}{m}$£¼-$\frac{1}{2}$£¬¼´-2£¼m£¼0£¬
¡àµãMµ½Ö±ÏßABµÄ¾àÀëdM=$\frac{|\frac{8-2{m}^{2}}{4+{m}^{2}}-2•\frac{4m}{4+{m}^{2}}-2|}{\sqrt{1+4}}$=-$\frac{4{m}^{2}+8m}{\sqrt{5}£¨4+{m}^{2}£©}$£¬
µãNµ½Ö±ÏßABµÄ¾àÀëdN=$\frac{|\frac{8m}{4+{m}^{2}}+2•\frac{{m}^{2}-4}{4+{m}^{2}}-2|}{\sqrt{1+4}}$=$\frac{16-8m}{\sqrt{5}£¨4+{m}^{2}£©}$£¬
¡àS=$\frac{1}{2}$|AB|£¨dM+dN£©=$\frac{\sqrt{5}}{2}$•[$\frac{16-8m}{\sqrt{5}£¨4+{m}^{2}£©}$-$\frac{4{m}^{2}+8m}{\sqrt{5}£¨4+{m}^{2}£©}$]
=-2•$\frac{{m}^{2}+4m-4}{4+{m}^{2}}$£¬
¼Çf£¨x£©=-2•$\frac{{x}^{2}+4x-4}{4+{x}^{2}}$£¬ÔòÁîf¡ä£¨x£©=$\frac{8£¨{x}^{2}-4x-4£©}{£¨4+{x}^{2}£©^{2}}$=0£¬
¼´x2-4x-4=0£¬½âµÃ£ºx=$2-2\sqrt{2}$»ò$2+2\sqrt{2}$£¨Éᣩ£¬
¡àf£¨x£©ÔÚÇø¼ä£¨-2£¬$2-2\sqrt{2}$£©Éϵ¥µ÷µÝÔö£¬ÔÚ£¨$2-2\sqrt{2}$£¬0£©Éϵ¥µ÷µÝ¼õ£¬
ÓÖ¡ßf£¨$2-2\sqrt{2}$£©=-2•$\frac{£¨2-2\sqrt{2}£©^{2}+4£¨2-2\sqrt{2}£©-4}{4+£¨2-2\sqrt{2}£©^{2}}$=$2\sqrt{2}$£¬
f£¨-2£©=-2•$\frac{£¨-2£©^{2}+4•£¨-2£©-4}{4+£¨-2£©^{2}}$=2£¬f£¨0£©=-2•$\frac{0+0-4}{4}$=2£¬
¡àËıßÐÎAMBNÃæ»ýSµÄÈ¡Öµ·¶Î§ÊÇ£º£¨2£¬$2\sqrt{2}$]£®
µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ¼×³µ | B£® | ÒÒ³µ | C£® | ±û³µ | D£® | ÎÞ·¨È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{{{a^2}+{b^2}}}{2}¡Ý{£¨\frac{a+b}{2}£©^2}$ | B£® | $\frac{b}{a}+\frac{a}{b}¡Ý2$ | C£® | $£¨a+b£©£¨\frac{1}{a}+\frac{1}{b}£©¡Ý4$ | D£® | $\frac{|a+b|}{2}¡Ý\sqrt{\;|ab|}$ |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com