精英家教网 > 高中数学 > 题目详情
已知抛物线C:x2=4y的焦点为F,点A(2,0),射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=
 
考点:抛物线的简单性质
专题:综合题
分析:求出抛物线C的焦点F的坐标,从而得到AF的斜率k=-
1
2
.过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.Rt△MPN中,根据tan∠MNP=
1
2
,从而得到|PN|=2|PM|,进而算出|MN|=
5
|PM|,由此即可得到|FM|:|MN|的值.
解答: 解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0)
∴抛物线的准线方程为l:y=-1,直线AF的斜率为k=
0-1
2-0
=-
1
2

过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,
∵Rt△MPN中,tan∠MNP=-k=
1
2

|PM|
|PN|
=
1
2
,可得|PN|=2|PM|,
得|MN|=
|PN|2+|PM|2
=
5
|PM|
因此可得|FM|:|MN|=|PM|:|MN|=1:
5

故答案为:1:
5
点评:本题给出抛物线方程和射线FA,求线段的比值.着重考查了直线的斜率、抛物线的定义、标准方程和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P与点F2关于直线y=
bx
a
对称,则该双曲线的离心率为(  )
A、
5
2
B、
5
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα)
b
=(1+cosβ,-sinβ)

(Ⅰ)若α=
π
3
,β∈(0,π),且
a
b
,求β;
(Ⅱ)若β=α,求
a
b
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(b-1)x2+bx+3(x∈[a 3])是偶函数,求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的内角A、B、C成等差数列,且A、B、C所对的边分别是a,b,c,则下列结论中正确的是
 
.(写出所有正确结论的序号)
B=
π
3

②若a,b,c成等差数列,则△ABC为等边三角形;
③若a=2c,则△ABC为锐角三角形;
④若
AB
2
=
AB
AC
+
BA
BC
+
CA
CB
,则3A=C

⑤若tanA+tanC+
3
>0
,则△ABC为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①始边和终边都相同的两个角一定相等.
②-135°是第二象限的角.
③若450°<α≤540°,则
α
4
是第一象限角.
④相等的两个角终边一定相同.
⑤已知cos(-800)=k,那么tan100°=-
1-k2
k

其中正确命题是
 
.(填正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+a)为奇函数,则a为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图(单位:cm)如图所示,则该几何体的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于(  )
A、4
3
π
B、
3
π
C、12π
D、20π

查看答案和解析>>

同步练习册答案