精英家教网 > 高中数学 > 题目详情

【题目】某市居民自来水收费标准如下:每户每月用水量不超过4吨时,每吨为2元;当用水量超4吨时,超过部分每吨为3元.八月甲、乙两用户共交水费元,已知甲、乙两用户月用水量分别为吨、吨.

(1)求关于的函数;

(2)若甲、乙两用户八月共交34元,分别求甲、乙两用户八月的用水量和水费.

【答案】(1)

(2)甲、乙两用户八月的用水量分别为 ,水费分别为20元、14元

【解析】

1)对甲、乙两用户用水情况分3种情况考虑,甲不超过4吨;甲超过4吨、乙不超过4吨;甲超过4吨、乙也超过4吨;从得到关于的函数表达式;

2)由(1)得到的分段函数,讨论各段函数值为34时,从而求得,再进一步求得甲、乙各自的用水量和水费.

1)由题意得:

①甲不超过4吨,则乙也必定不超过4吨,

所以,即时,

②甲超过4吨、乙不超过4吨,

所以时,

③甲超过4吨、乙也超过4吨,

所以时,

综上所述:

2)当时,(舍);

时,(舍),

时,

甲、乙用水分别

设甲、乙的水费分别

甲、乙两用户八月的用水量分别为 ,水费分别为20元、14元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知多面体均垂直于平面

(1)证明:⊥平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

判断的奇偶性,并作出函数的图像;

关于的方程恰有个不同的实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为奇函数,为常数.

1)求证:上的增函数;

2)若对于区间上的每一个值,不等式恒成立,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解学生考试时的紧张程度,现对100名同学进行评估,打分区间为,得到频率分布直方图如下,其中成等差数列,且.

(1)求的值;

(2)现采用分层抽样的方式从紧张度值在中共抽取5名同学,再从这5名同学中随机抽取2人,求至少有一名同学是紧张度值在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既没有对称中心,也没有对称轴的有(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《最强大脑》是江苏卫视引进德国节目《SuperBrain》而推出的大型科学竞技真人秀节目.节目筹备组透露挑选选手的方式:不但要对空间感知、照相式记忆进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于120分为“未入围学生”.已知男生入围24人,女生未入围80.

1)根据题意,填写下面的列联表,并根据列联表判断是否有以上的把握认为脑力测试后是否为“入围学生”与性别有关;

性别

入围人数

未入围人数

总计

男生

24

女生

80

总计

2)用分层抽样的方法从“入围学生”中随机抽取11名学生,然后再从这11名学生中抽取3名参加某期《最强大脑》,设抽到的3名学生中女生的人数为,求的分布列及数学期望.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)当时,讨论函数的单调性;

(2)若关于的不等式在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为.

(I)求椭圆的方程

(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值

查看答案和解析>>

同步练习册答案