精英家教网 > 高中数学 > 题目详情
18.定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b)满足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,则称函数f(x)是[a,b]上的“双中值函数”,已知函数f(x)=2x3-x2+m是[0,2a]上“双中值函数”,则实数a的取值范围是$({\frac{1}{8},\frac{1}{4}})$.

分析 根据定义得出$\frac{f(2a)-f(0)}{2a}$=8a2-2a,相当于6x2-2x=8a2-2a在[0,2a]上有两个根,利用二次函数的性质解出a的范围即可

解答 解:f(x)=2x3-x2+m是[0,2a]上的“双中值函数”,
∴$\frac{f(2a)-f(0)}{2a}$=8a2-2a,
∵f'(x)=6x2-2x,
∴6x2-2x=8a2-2a在[0,2a]上有两个根,
令g(x)=6x2-2x-8a2+2a,
∴△=4+24(8a2-2a)>0,
g(0)>0,即-8a2+2a>0,
g(2a)>0,即24a2-4a-8a2+2a>0,
2a>$\frac{1}{6}$,
解得:a∈$({\frac{1}{8},\frac{1}{4}})$
故答案为:$({\frac{1}{8},\frac{1}{4}})$

点评 本题考查的知识点是根的存在性及根的个数判断,熟练掌握方程根与对应函数零点之间的关系是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知cosα=$\frac{4}{5}$,cos(α+β)=$\frac{3}{5}$,且α,β均为锐角,求cos β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为梯形,AD∥BC,AD=2BC,过 A1,C,D三点的平面记为α,BB1与α的交点为Q.
(1)证明:Q为BB1的中点;
(2)若A1A=4,CD=2,梯形 ABCD的面积为6,求平面α与底面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设A={x|2≤x≤6},B={x|2a≤x≤a+3},若A∪B=A,则实数a的取值范围是(  )
A.[1,3]B.[3,+∞)C.[1,+∞)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数f(x)和偶函数g(x)满足:f(x)+g(x)=ex,则(  )
A.$f(x)=\frac{{{e^x}+{e^{-x}}}}{2}$B.$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$C.$g(x)=\frac{{{e^x}-{e^{-x}}}}{2}$D.$g(x)=\frac{{{e^{-x}}-{e^x}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校高三某班在一次语文周测中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,104),[104,108),[108,112),[112,116),[116,120),[120,124),[124,128],绘制出如图3所示频率分布直方图,已知分数低于112分的有18人,则分数不低于120分的人数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2ex
(1)求f(x)在(-∞,0)上的最大值;
(2)若函数f(x)在(-1,+∞)上的最小值为m,当x>0时,试比较$m-\frac{1}{2}$与lnx-2x+1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1
(Ⅰ)求f(x)的周期和单调减区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{6},\frac{π}{4}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{x}^{2}+5x+5}{{e}^{x}}$.
(1)求f(x)的极大值;
(2)求f(x)在区间(-∞,0]上的最小值;
(3)若x2+5x+5-aex≥0,求a的取值范围.

查看答案和解析>>

同步练习册答案