精英家教网 > 高中数学 > 题目详情
12.下列说法不正确的是(  )
A.命题“?x∈R,x2≥0”的否定为“?x0∈R,x2<0”
B.“a>b”是“ac2>bc2”的必要不充分条件
C.“若x2-6x+5≠0,则x≠1”是真命题
D.命题p:A成立,命题q:B成立,则命题¬p∨¬q表示A,B至少有一个成立

分析 A,写出命题“对?x∈R,都有x2≥0”的否定,可判断A;
B,利用充分必要条件的概念,通过举例说明可判断B;
C,解不等式,从而判断命题的真假;
D,根据排除法判断D即可.

解答 解:A:命题“对?x∈R,都有x2≥0”的否定为“?x0∈R,使得x02<0”,A正确;
B:“a>b”不能⇒“ac2>bc2”,例如c=0时ac2>bc2就不成立,即充分性不成立;
反之,“ac2>bc2”⇒“a>b”,即必要性成立,B正确;
C:若x2-6x+5≠0,则x≠1且x≠5,故x≠1,∴“若x2-6x+5≠0,则x≠1”是真命题;C正确;
根据排除法,故选:D.

点评 本题考查命题的真假判断与应用,综合考查命题的否定、充分必要条件的理解与应用,考查四种命题之间的关系与复合命题的真假判断,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=2cosx(sinx+cosx)的最大值为(  )
A.2B.$\sqrt{2}$-1C.$\sqrt{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(1,1),且($\overrightarrow{a}$+$λ\overrightarrow{b}$)$⊥\overrightarrow{a}$,则λ=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题“?x0∈R,使x02-1>0”的否定为?x∈R,使x2-1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.七位评委为某跳水运动员打出的分数的茎叶图如图,其极差为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知ξ~N(3,σ2),若P(ξ≤2)=0.2,则P(ξ≤4)等于(  )
A.0.2B.P(-2≤ξ≤2)=0.4C.P(ξ>2)=0.2D.P(ξ≤4)=0.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,-2),则与向量$\overrightarrow{b}$-$\overrightarrow{a}$垂直的单位向量为(  )
A.(-2,1)或(2,-1)B.(-1,2)或(1,-2)
C.(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)或($\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)D.(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知“x<k”是“x2>4”的充分不必要条件,则实数k的取值范围是(  )
A.(-∞,-2]B.(-∞,-2)C.(2,+∞)D.[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合M={x|1<x+1≤3},N={x|x2-2x-3>0},则(∁RM)∩(∁RN)等于(  )
A.(-1,3)B.(-1,0)∪(2,3)C.(-1,0]∪[2,3)D.[-1,0]∪(2,3]

查看答案和解析>>

同步练习册答案