精英家教网 > 高中数学 > 题目详情

【题目】离心率为的椭圆经过点是坐标原点.

1)求椭圆的方程;

2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且?若存在,求出该圆的方程,并求的取值范围;若不存在,请说明理由.

【答案】1

2)存在,理由见解析;圆的方程为.

【解析】

1)利用离心率和椭圆所过点联立方程组可求椭圆的方程;

2)先假设存在符合要求的圆,利用求出圆的切线,结合弦长公式表示出,利用基本不等式求解范围.

1)因为椭圆经过点,所以

又离心率为,所以,结合可得

所以椭圆的方程为.

2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且,设圆的切线方程为.

联立

.

因为,所以,即

所以,即

因为圆的切线方程为,所以圆的半径为,所求圆的方程为.

可得,即

当圆的切线斜率不存在时,切线方程为,切线与椭圆的交点为或者,均满足.

综上可知,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,且.

因为

所以

时,由于,所以,当且仅当时,取到最大值3

时,

当斜率不存在时,直线与椭圆交于或者此时.

综上可知,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件,试估计的概率;

(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我区的中小学办学条件在政府的教育督导下,迅速得到改变.督导一年后.分别随机抽查了高中(用表示)与初中(用表示)各10所学校.得到相关指标的综合评价得分(百分制)的茎叶图如图所示.则从茎叶图可得出正确的信息为(80分及以上为优秀)(

①高中得分与初中得分的优秀率相同

②高中得分与初中得分的中位数相同

③高中得分的方差比初中得分的方差大

④高中得分与初中得分的平均分相同

A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司即将推车一款新型智能手机,为了更好地对产品进行宣传,需预估市民购买该款手机是否与年龄有关,现随机抽取了50名市民进行购买意愿的问卷调查,若得分低于60分,说明购买意愿弱;若得分不低于60分,说明购买意愿强,调查结果用茎叶图表示如图所示.

1)根据茎叶图中的数据完成列联表,并判断是否有95%的把握认为市民是否购买该款手机与年龄有关?

购买意愿强

购买意愿弱

合计

20-40

大于40

合计

2)从购买意愿弱的市民中按年龄进行分层抽样,共抽取5人,从这5人中随机抽取2人进行采访,记抽到的2人中年龄大于40岁的市民人数为,求的分布列和数学期望.

附:

6.635

0.100

0.050

0.010

0.001

2.706

3.841

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:

(2)当时,若不等式恒成立,求实数的取值范围;

(3)若,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓后要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现三次音乐获得150分,出现两次音乐获得100分,出现一次音乐获得50分,没有出现音乐则获得-300.设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

1)若一盘游戏中仅出现一次音乐的概率为,求的最大值点

2)以(1)中确定的作为的值,玩3盘游戏,出现音乐的盘数为随机变量,求每盘游戏出现音乐的概率,及随机变量的期望

3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若关于的方程有且只有一个实数根,求实数的取值范围;

2)若函数的图象总在函数图象的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=|xa|+|x|a0).

1)若不等式fx)﹣| x|≥4x的解集为{x|x≤1},求实数a的值;

2)证明:fx

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设点为椭圆的右焦点,圆且斜率为的直线交圆两点,交椭圆于点两点,已知当时,

(1)求椭圆的方程.

(2)当时,求的面积.

查看答案和解析>>

同步练习册答案