精英家教网 > 高中数学 > 题目详情
14.函数y=3-|x|的单调递减区间是(  )
A.(-∞,+∞)B.(-∞,+0]C.[0,+∞)D.不存在

分析 根据复合函数单调性之间的关系进行判断即可.

解答 解:y=3-|x|=($\frac{1}{3}$)|x|
设t=|x|,
则y=($\frac{1}{3}$)t为减函数,
要求函数y=3-|x|的单调递减区间,则等价求t=|x|的单调递增区间,
当x≥0时,t=|x|=x为增函数,
即函数y=3-|x|的单调递减区间[0,+∞),
故选:C

点评 本题主要考查复合函数单调区间的求解,利用换元法结合复合函数单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数y=$\frac{ax+b}{{x}^{2}+1}$(x∈R,且a≠0)的值域为[-1,4],则a,b的值为(  )
A.a=4,b=3B.a=-4,b=3C.a=±4,b=3D.a=4,b=±3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:函数f(x)=x2-(2a+1)x+a有两个不同的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}中.a1=2.a5=6
(1)求数列{an}的通项公式:
(2)若bn=3${\;}^{{a}_{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.比较下列各题中两个代数式值的大小:
(1)(2a+1)(a-3)与(a-6)(2a+7)+45;
(2)(x+1)(x2+$\frac{x}{2}$+1)与(x+$\frac{1}{2}$)(x2+x+1);
(3)1与$\frac{2x}{{x}^{2}+1}$;
(4)a2+b2与2a+2b-2;
(5)3(a2+2b2)与8ab.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x+1)为奇函数,当x>1时,f(x)=-5x+3x.则f(-1)的值为 (  )
A.0B.2C.-12D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若(1-a)m>am对任意的正有理数m都成立,则实数a的取值范围是0≤a<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等比数列{an}中,已知a1+a2+a3=30,a4+a5+a6=60,那么a10+a11+a12=240.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设等差数列{an}的公差为d,若数列{2a1an}为递减数列,则(  )
A.d<0B.d>0C.a1d<0D.a1d>0

查看答案和解析>>

同步练习册答案